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The most prominent account of the rationality of partial belief states
is Bayesianism.

Bayesianism can be regarded as part of a theory of practical decision
making:

• What should I do?

– Maximize expected utility

• How do I do that?

– For each course of action A and each possible outcome of pur-
suing that course of action, calculate:

EVA = ∑i P(outcomei | I do A) ·Value(outcomei)

– This presupposes probabilistic beliefs (the P(outcomei) part)

– But if my probabilistic beliefs are incoherent then I’ll end up
doing obviously irrational things (see: Dutch book arguments)

– Bayesianism provides an appealing theory of coherence1

1 Actually that’s complicated. Bayesian-
ism is both a theory of when a set of
beliefs is coherent at a moment in time,
and it’s also a theory of the appro-
priate response to new propositional
evidence, which is a phenomenon that
plays out over time; it’s a theory of
both synchronic coherence and diachronic
coherence. Dutch books are most com-
monly used to motivate the synchronic
bit of the theory, though there are also
diachronic versions of the argument.

But Bayesianism can also be regarded as an epistemology. Joyce
identifies three components of Bayesian epistemology:

Evidential Probability At any time t, a rational believer’s opinions
can be faithfully modeled by a family of probability functions Ct,
hereafter called her credal state, the members of which accurately
reflect her total evidence at t.

Learning as Bayesian Updating Learning experiences can be modeled
as shifts from one credal state to another that proceed in accor-
dance with Bayes’s Rule.

Confirmational Relativity A wide range of questions about evidential
relationships can be answered on the basis of information about
structural features credal states.

This paper is focused on Evidential Probability.
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Probabilities reflect total evidence along three distinct (but related)
dimensions:

Balance how decisively the data tells in favor of the proposition...
what individual probability values reflect

Weight the gross amount of relevant data available... reflected in the
concentration and stability of probabilities in the face of changing
information

Specificity a matter of the degree to which the data discriminates the
truth of the proposition from that of alternatives [reflecting] the
spread of probability values across a credal state (154)

Let’s take those in turn.

Balance vs Weight

Here is Keynes:

As the relevant evidence [for a hypothesis] at our disposal in-
creases, the magnitude of [its] probability may either decrease
or increase, according as the new knowledge strengthens the
unfavorable or favorable evidence; but something seems to have
increased in either case?we have a more substantial basis on
which to rest our conclusion...New evidence will sometimes de-
crease the probability of [the hypothesis] but will always increase
its ‘weight’. (1921, p. 77)

The intuition here is that any body of evidence has both a kind of
valence and a size. Its valence is a matter of which way, and how
decisively, the relevant data ‘points.’ A body of evidence will often
be composed of items of data with different valances that need to be
compared. It is this ‘balance of the evidence’ that credences reflect.
The size or ‘weight’ of the evidence has to do with how much relevant
information the data contains, irrespective of which way it points. As
Keynes emphasized, we should not expect the weight of a body of
evidence to be reflected in individual credence values. From the fact
two hypotheses have the same credence we can infer that the balance
of the evidence for each is the same, but we cannot infer anything at all
about the relative weights of the evidence in their favor. (158-9)
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Example:

Four Urns: Jacob and Emily both start out knowing that the urn U
was randomly chosen from a set of four urns urn0, urn1, urn2, urn3
where urni contains three balls, i of which are blue and 3 - i of which
are green. Since the choice of U was random both subjects assign equal
credence to the four hypotheses about its contents: c(U = urni) = 1/4.
Moreover, both treat these hypotheses as statements about the objective
chance of drawing a blue ball from U, so that knowledge of U = urni
‘screen offs’ any sampling data in the sense that c(Bnext |E & U = urni)
= c(Bnext |U = urni), where Bnext says that the next ball drawn from the
urn will be blue and E is a proposition that describes any prior series
of random draws with replacement from U. Finally, Jacob and Emily
regard random drawing with replacement as an exchangeable process,
so that any series of draws that produces m blue balls and n green
balls is as likely as any other such series, irrespective of order. Use
BmGn to denote the generic event in which m blue balls and n green
balls are drawn at random and with replacement form U. Against this
backdrop of shared evidence, suppose Jacob sees five balls drawn at
random and with replacement from U and observes that all are blue, so
his evidence is B5G0. Emily, who sees Jacob’s evidence, looks at fifteen
additional draws of which twelve come up blue, so her evidence is
B17G3. What should Emily and Jacob think about Bnext? (159)

So what will Jacob and Emily’s respective beliefs be regarding the
probabilities of each urn?

Jacob:

c(U = urn0 | B5G0) = 0

c(U = urn1 | B5G0) = 0.0036

c(U = urn2 | B5G0) = 0.1159

c(U = urn3 | B5G0) = 0.8804

Emily:

c(U = urn0 | B17G3) = 0

c(U = urn1 | B17G3) = 0.00006

c(U = urn2 |B17G3) = 0.99994

c(U = urn3 |B17G3) = 0

And what should their confidence be that the next ball drawn will be
blue? I.e., what’s c(Bnext)?

For each it should be:

c(Bnext) = ∑i c(U = urni) · c(Bnext | U = urni)

= ∑i c(U = urni) · i/3

For Jacob that means: c(Bnext | B5G0) = 0.959

For Emily that means: c(Bnext | B17G3 ) = 0.666626
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Observations:

1. In one sense, Jacob’s evidence is better: it speaks more strongly in
favor of Bnext.

• i.e., the balance of Jacob’s evidence is further tilted towards Bnext,
in the sense that his credence in Bnext conditional on his evi-
dence is much higher than Emily’s credence in Bnext conditional
on her evidence

2. in another sense Emily’s evidence is better: she has more of if

3. i.e., Emily’s evidence has more weight

Question: the balance of one’s evidence for Bnext shows up in one’s
credences in the most obvious way: it’s just c(Bnext | E). Where does
the weight show up in your credences?

...the weight of the evidence for a proposition X often manifests itself
not in X’s unconditional credence, but in the resilience of this credence
conditional on various potential data sequences. A person’s credence
for X is resilient with respect to datum E to the extent that her credence
for X given E remains close to her unconditional credence for X. Note
that resilience is defined relative to a specific item of data: a person’s
belief about X may be resilient relative to one kind of data, but unstable
with respect to another. That said, it is usually the case that the greater
volume of data a person has for a hypothesis the more resilient her cre-
dence tends to be across a wide range of additional data. Our example
illustrates this nicely. Even though Jacob’s evidence points more defini-
tively toward a blue ball on the next draw, his credence is less resilient
than Emily’s with respect to almost every potential data sequence,
the sole exceptions being those sequences in which only blue balls are
drawn. In this regard Emily’s evidence is better than Jacob’s: even
though she is not so sure as he is that a blue ball will be drawn, her
level of confidence is better informed that his, and so is less susceptible
to change in the face of new data. (161)

Specificity

...data is less than fully specific with respect to X when it is either in-
complete in the sense that it fails to discriminate X from incompatible
alternatives, or when it is ambiguous in the sense of being subject to
different readings that alter its evidential significance for X. Both in-
completeness and ambiguity are defined relative to a given hypothesis,
and both are matters of degree. When you are told that Ed is either a
professional basketball player or a professional jockey you are given
very specific information about the hypothesis that he is an athlete, but
somewhat less specific information about the hypothesis that he is a
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jockey. Likewise, if you draw a ball at random from an urn and exam-
ine it under yellow light that makes it hard to distinguish blue from
green, then finding that the ball looks blue gives you specific informa-
tion about how it appears in yellow light, but the data is ambiguous
with respect to the hypothesis that the ball is actually blue. (171)

Unspecific evidence is prima facie problematic for Bayesianism in
cases where the evidence supports two hypotheses equally, e.g.
the observation of the greenness of the emerald is consistent with
both the emerald is green and the emerald is grue, which are themselves
jointly inconsistent. So what should my posterior credence be in
those propositions?

Possible response: equal confidence

This response is often motivated by appeal to the Principle of Suffi-
cient Reason:

PSR: hypotheses... for which there is symmetrical evidence should
always be assigned equal probabilities

Problem for PSR: there’s a cube with side length between 1cm and
2cm, and my evidence is perfectly symmetrical. What should I be-
lieve about the side length?

Possible response: fancy math.

Joyce: that’s all nonsense. A uniform distribution of credences over
possibilities (as required by PSR) is only rationally obligatory when
there’s evidence supporting a uniform distribution over possibilities.
In cases where PSR might be thought appropriate, no such data is
had. So don’t follow PSR.

So what should you do?

the proper response to symmetrically ambiguous or incomplete evi-
dence is not to assign probabilities symmetrically, but to refrain from
assigning precise probabilities at all. Indefiniteness in the evidence is
reflected not in the values of any single credence function, but in the
spread of values across the family of all credence functions that the
evidence does not exclude. This is why modern Bayesians represent
credal states using sets of credence functions. It is not just that sharp
degrees of belief are psychologically unrealistic (though they are). Im-
precise credences have a clear epistemological motivation: they are the
proper response to unspecific evidence. (171)

So how is the specificity of evidence reflected in your credences?

The specificity of the evidence is reflected in the spread of credence
values for the proposition across the believer’s credal state. (176)


