
Definition 2.1. The basic symbols of SL are of three kinds:

1. Logical Connectives: ∼, ∧, ∨, →, ↔
2. Punctuation Symbols: (,)

3. Sentence Letters: 𝐴,𝐵,𝐶,… , 𝑆, 𝑇 ,𝐴1, 𝐵1, 𝐶1,… , 𝑆1, 𝑇1, 𝐴2,…

1

Definition 2.1. The basic symbols of SL are of three kinds:

1. Logical Connectives: ∼, ∧, ∨, →, ↔
2. Punctuation Symbols: (,)

3. Sentence Letters: 𝐴,𝐵,𝐶,… , 𝑆, 𝑇 ,𝐴1, 𝐵1, 𝐶1,… , 𝑆1, 𝑇1, 𝐴2,…

Definition 2.2. The sentences of SL are given by the following recursive
definition:

Base Clause: Every sentence letter is a sentence.

Generating Clauses:

1. If 𝜙 is a sentence, then so is ∼𝜙.
2. If 𝜙 and 𝜃 are sentences, then so are both (𝜙→𝜃) and (𝜙↔𝜃).
3. If all of 𝜙1, 𝜙2, 𝜙3, 𝜙4,… , 𝜙𝑛 are sentences (the list must include at

least two sentences and be finite), then so are (𝜙1 ∧ 𝜙2 ∧ 𝜙3 ∧ 𝜙4 ∧… ∧ 𝜙𝑛)
and (𝜙1 ∨ 𝜙2 ∨ 𝜙3 ∨ 𝜙4 ∨… ∨ 𝜙𝑛).

Closure Clause: A sequence of symbols is an SL sentence iff its being a sen-
tence follows from the previous two clauses.

2

Definition 2.1. The basic symbols of SL are of three kinds:

1. Logical Connectives: ∼, ∧, ∨, →, ↔
2. Punctuation Symbols: (,)

3. Sentence Letters: 𝐴,𝐵,𝐶,… , 𝑆, 𝑇 ,𝐴1, 𝐵1, 𝐶1,… , 𝑆1, 𝑇1, 𝐴2,…

Definition 2.2. The sentences of SL are given by the following recursive
definition:

Base Clause: Every sentence letter is a sentence.

Generating Clauses:

1. If 𝜙 is a sentence, then so is ∼𝜙.
2. If 𝜙 and 𝜃 are sentences, then so are both (𝜙→𝜃) and (𝜙↔𝜃).
3. If all of 𝜙1, 𝜙2, 𝜙3, 𝜙4,… , 𝜙𝑛 are sentences (the list must include at

least two sentences and be finite), then so are (𝜙1 ∧ 𝜙2 ∧ 𝜙3 ∧ 𝜙4 ∧… ∧ 𝜙𝑛)
and (𝜙1 ∨ 𝜙2 ∨ 𝜙3 ∨ 𝜙4 ∨… ∨ 𝜙𝑛).

Closure Clause: A sequence of symbols is an SL sentence iff its being a sen-
tence follows from the previous two clauses.

Definition 2.2 defines the official sentences of SL.

Definition 2.4 A string of symbols is an unofficial sentence of SL iff
we can obtain it from an official sentence by

1. deleting outer parentheses, or

2. replacing one or more pairs of official round parentheses () with square
brackets [] or curly brackets { }.

3

Definition 2.5. The following clauses define when one sentence is a sub-
sentence of another:

1. Every sentence is a subsentence of itself.

2. 𝜙 is a subsentence of ∼𝜙.

3. 𝜙 and 𝜃 are subsentences of (𝜙→𝜃) and (𝜙↔𝜃).
4. All of 𝜙1, 𝜙2, 𝜙3, 𝜙4,… , 𝜙𝑛 are subsentences of (𝜙1 ∧ 𝜙2 ∧ 𝜙3 ∧ 𝜙4 ∧… ∧ 𝜙𝑛)

and (𝜙1 ∨ 𝜙2 ∨ 𝜙3 ∨ 𝜙4 ∨… ∨ 𝜙𝑛).
5. (Transitivity) If 𝜙 is a subsentence of 𝜃 and 𝜃 is a subsentence of 𝜓,

then 𝜙 is a subsentence of 𝜓.

6. That’s all.

A sentence 𝜙 is a proper subsentence of 𝜓 iff 𝜙 is a subsentence of, but
isn’t identical to 𝜓. So, while each sentence is a subsentence of itself, no
sentence is a proper subsentence of itself.

4

Definition 2.8 The following clauses define the order of every SL sen-
tence. Let ORD𝜙 be the order of 𝜙. Then:

1. If 𝜙 is an atomic sentence (a sentence letter), then ORD𝜙 = 1.

2. For any sentence 𝜙, ORD∼𝜙 = ORD𝜙 + 1.

3. For any sentences 𝜙 and 𝜃, ORD(𝜙→𝜃) is one greater than the max of
ORD𝜙 and ORD𝜃. Likewise, ORD(𝜙↔𝜃) is one greater than the max
of ORD𝜙 and ORD𝜃.

4. For any sentences 𝜙1,… , 𝜙𝑛, ORD(𝜙1 ∧… ∧ 𝜙𝑛) is one greater than
the max of ORD𝜙1, …, ORD𝜙𝑛.

5. For any sentences 𝜙1,… , 𝜙𝑛, ORD(𝜙1 ∨… ∨ 𝜙𝑛) is one greater than
the max of ORD𝜙1, …, ORD𝜙𝑛.

6. That’s all.

5

Definition 2.10. The main connective is the connective token (or
tokens) that occur(s) in the sentence but in no proper subsentence.

6

Definition 2.12 The construction tree for a sentence is a diagram of
how the sentence is generated through the recursive clauses of the definition
of SL sentences. We put atomic sentences as leaves at the top, and the gen-
erating clauses specify how we can join nodes of the tree together (starting
with the leaves at the top) into new nodes. The complete sentence is the
node at the base of the tree.

7

Definition 2.12 The construction tree for a sentence is a diagram of
how the sentence is generated through the recursive clauses of the definition
of SL sentences. We put atomic sentences as leaves at the top, and the gen-
erating clauses specify how we can join nodes of the tree together (starting
with the leaves at the top) into new nodes. The complete sentence is the
node at the base of the tree.

Example: (𝐴 ∨ (𝐷→𝐵)) ∧ ∼𝐺.

(𝐴 ∨ (𝐷→𝐵)) ∧ ∼𝐺

𝐴 ∨ (𝐷→𝐵)

𝐴 𝐷→𝐵

𝐷 𝐵

𝐺
∼𝐺

8

Definition 2.12 The construction tree for a sentence is a diagram of
how the sentence is generated through the recursive clauses of the definition
of SL sentences. We put atomic sentences as leaves at the top, and the gen-
erating clauses specify how we can join nodes of the tree together (starting
with the leaves at the top) into new nodes. The complete sentence is the
node at the base of the tree.

Example: (𝐴 ∨ (𝐷→𝐵)) ∧ ∼𝐺.

(𝐴 ∨ (𝐷→𝐵)) ∧ ∼𝐺

𝐴 ∨ (𝐷→𝐵)

𝐴 𝐷→𝐵

𝐷 𝐵

𝐺
∼𝐺

NB:

• The subsentences of a sentence are the nodes in the sentence’s construc-
tion tree.

• The order of a sentence is the number of nodes of its longest branch.

• The main connective of a sentence is the connective added last (at the
bottom) of the construction tree.

9

Definition 2.12 The construction tree for a sentence is a diagram of
how the sentence is generated through the recursive clauses of the definition
of SL sentences. We put atomic sentences as leaves at the top, and the gen-
erating clauses specify how we can join nodes of the tree together (starting
with the leaves at the top) into new nodes. The complete sentence is the
node at the base of the tree.

Example: ((𝐶 ∧ 𝐷) → 𝐴) ↔ (𝐷 ∨𝐻).

((𝐶 ∧ 𝐷) → 𝐴) ↔ (𝐷 ∨𝐻)

(𝐶 ∧ 𝐷) → 𝐴

𝐶 ∧𝐷

𝐶 𝐷

𝐴

𝐷 ∨𝐻

𝐷 𝐻

NB:

• The subsentences of a sentence are the nodes in the sentence’s construc-
tion tree.

• The order of a sentence is the number of nodes of its longest branch.

• The main connective of a sentence is the connective added last (at the
bottom) of the construction tree. f

10

Truth in a Model

Model of single sentence:

Definition 2.17 Given that 𝜙 is a sentence of SL, a model for 𝜙 is an
assignment of a truth value, either true or false, to each sentence letter in 𝜙.

notation:
if a model 𝔪 assigns a sentence letter 𝜓 the value true, we will write

𝔪(𝜓) = 𝖳
If 𝔪 assigns a sentence letter 𝜓 the value false, we will write 𝔪(𝜓) = 𝖥

11

Truth in a Model

Model of single sentence:

Definition 2.17 Given that 𝜙 is a sentence of SL, a model for 𝜙 is an
assignment of a truth value, either true or false, to each sentence letter in 𝜙.

notation:

• if a model 𝔪 assigns a sentence letter 𝜓 the value true, we will write
𝔪(𝜓) = 𝖳

• If 𝔪 assigns a sentence letter 𝜓 the value false, we will write 𝔪(𝜓) =
𝖥.

Model of a set of sentences:

Definition 2.18 Given that Δ is a set of SL sentences, 𝔪 is a model for
Δ iff 𝔪 is a model for each sentence in Δ [i.e. iff 𝔪 is a model for each
sentence letter in each sentence in Δ (by Def 2.17)]

12

Truth in a Model

Model of single sentence:

Definition 2.17 Given that 𝜙 is a sentence of SL, a model for 𝜙 is an
assignment of a truth value, either true or false, to each sentence letter in 𝜙.

notation:

• if a model 𝔪 assigns a sentence letter 𝜓 the value true, we will write
𝔪(𝜓) = 𝖳

• If 𝔪 assigns a sentence letter 𝜓 the value false, we will write 𝔪(𝜓) =
𝖥.

Model of a set of sentences:

Definition 2.18 Given that Δ is a set of SL sentences, 𝔪 is a model for
Δ iff 𝔪 is a model for each sentence in Δ [i.e. iff 𝔪 is a model for each
sentence letter in each sentence in Δ (by Def 2.17)]

Model for SL
Definition 2.19 𝔪 is a model for SL iff 𝔪 is a model for every sentence
of SL.

13

Sentences more complex than single sentence letters are not directly assigned
truth values by models:

Model: 𝔪(𝐴) = 𝖳,𝔪(𝐵) = 𝖥,𝔪(𝐷) = 𝖥,𝔪(𝐺) = 𝖳
sentence: (𝐴 ∨ (𝐷 → 𝐵)) ∧ ∼𝐺

𝔪[(𝐴 ∨ (𝐷 → 𝐵)) ∧ ∼𝐺] = ???

14

Truth Functions

Definition 2.20 The following clauses define when an SL sentence 𝜃 is
true (or false) on a model 𝔪 for 𝜃:

1. A sentence letter 𝜙 is true on 𝔪 iff 𝔪 assigns true to it, i.e. iff 𝔪(𝜙) = 𝖳.

2. A negation ∼𝜙 is true on 𝔪 iff the sentence 𝜙 is false on 𝔪.

3. A conjunction 𝜙1 ∧ 𝜙2 ∧ 𝜙3 ∧ 𝜙4 ∧… ∧ 𝜙𝑛 is true on 𝔪 iff all of the
conjuncts are true on 𝔪.

4. A disjunction 𝜙1 ∨ 𝜙2 ∨ 𝜙3 ∨ 𝜙4 ∨… ∨ 𝜙𝑛 is true on 𝔪 iff at least one
of the disjuncts is true on 𝔪.

5. A conditional 𝜙→𝜓 is true on 𝔪 iff the LHS is false or the RHS is true
on 𝔪.

6. A biconditional 𝜙 ↔ 𝜓 is true on 𝔪 iff both 𝜙 and 𝜓 have the same
truth value on 𝔪.

7. If a sentence is false on 𝔪 iff it’s not true on 𝔪.

15

Truth Functions

Definition 2.20 The following clauses define when an SL sentence 𝜃 is
true (or false) on a model 𝔪 for 𝜃:

1. A sentence letter 𝜙 is true on 𝔪 iff 𝔪 assigns true to it, i.e. iff 𝔪(𝜙) = 𝖳.

2. A negation ∼𝜙 is true on 𝔪 iff the sentence 𝜙 is false on 𝔪.

3. A conjunction 𝜙1 ∧ 𝜙2 ∧ 𝜙3 ∧ 𝜙4 ∧… ∧ 𝜙𝑛 is true on 𝔪 iff all of the
conjuncts are true on 𝔪.

4. A disjunction 𝜙1 ∨ 𝜙2 ∨ 𝜙3 ∨ 𝜙4 ∨… ∨ 𝜙𝑛 is true on 𝔪 iff at least one
of the disjuncts is true on 𝔪.

5. A conditional 𝜙→𝜓 is true on 𝔪 iff the LHS is false or the RHS is true
on 𝔪.

6. A biconditional 𝜙 ↔ 𝜓 is true on 𝔪 iff both 𝜙 and 𝜓 have the same
truth value on 𝔪.

7. If a sentence is false on 𝔪 iff it’s not true on 𝔪.

Important: truth value assignments vary from model to model,
truth-funcitonal definitions of connectives do not.

16

Computing truth values of complex sentences

Method 1: compute 𝔪(𝜙) by computing truth in 𝔪 for each of
𝜙’s subsentences, using Definition 2.20

Model: 𝔪(𝐴) = 𝖳,𝔪(𝐵) = 𝖥,𝔪(𝐷) = 𝖥,𝔪(𝐺) = 𝖳

1. 𝔪(𝐴 ∧ ∼𝐵) =
2. 𝔪((𝐴 ∨ (𝐷 → 𝐵)) ∧ ∼𝐺)) =

17

Computing truth values of complex sentences

Method 2: construction tree method

1. construct the tree 𝜙
2. 𝔪 and Clause 1 of Def. 2.20 establish the truth values of the sentence

letters at the top of the tree

3. work you way down, using the relevant clause from Def 2.20 to determine
the truth value of more complex subsentences of 𝜙

Example: (𝐴 ∨ (𝐷→𝐵)) ∧ ∼𝐺.

(𝐴 ∨ (𝐷→𝐵)) ∧ ∼𝐺

𝐴 ∨ (𝐷→𝐵)

𝐴 𝐷→𝐵

𝐷 𝐵

∼𝐺

𝐺

18

Computing truth values of complex sentences

Method 2: construction tree method

1. construct the tree 𝜙
2. 𝔪 and Clause 1 of Def. 2.20 establish the truth values of

the sentence letters at the top of the tree

3. work you way down, using the relevant clause from Def 2.20 to determine
the truth value of more complex subsentences of 𝜙

Example: (𝐴 ∨ (𝐷→𝐵)) ∧ ∼𝐺.

(𝐴 ∨ (𝐷→𝐵)) ∧ ∼𝐺

𝐴 ∨ (𝐷→𝐵)

𝐴/𝖳 𝐷→𝐵

𝐷/𝖥 𝐵/𝖥

∼𝐺

𝐺/𝖳

19

Computing truth values of complex sentences

Method 2: construction tree method

1. construct the tree 𝜙
2. 𝔪 and Clause 1 of Def. 2.20 establish the truth values of

the sentence letters at the top of the tree

3. work you way down, using the relevant clause from Def
2.20 to determine the truth value of more complex sub-
sentences of 𝜙

Example: (𝐴 ∨ (𝐷→𝐵)) ∧ ∼𝐺.

(𝐴 ∨ (𝐷→𝐵)) ∧ ∼𝐺/𝖥

𝐴 ∨ (𝐷→𝐵)/𝖳

𝐴/𝖳 𝐷→𝐵/𝖳

𝐷/𝖥 𝐵/𝖥

∼𝐺/𝖥

𝐺/𝖳

20

Practice sentences

Calculate the truth values of 𝔪 using Definition 2.20, justifying your answers.
Then, verify your answers by constructing a truth tree for each sentence

Model: 𝔪(𝐴) = 𝖳,𝔪(𝐵) = 𝖥,𝔪(𝐷) = 𝖥,𝔪(𝐺) = 𝖳

1. 𝔪(𝐴 ∧ ∼𝐴) =
2. 𝔪(∼𝐴 → 𝐵) =
3. 𝔪(𝐴 → (𝐴 ↔ ∼𝐵) =
4. 𝔪(𝐵 ∨ (𝐴 → 𝐵)) =

21

Truth Tables and Truth Functional Connectives

∼, ∧, ∨, → and ↔ are truth functions: functions from truth values to
truth values, often given in truth tables.

Example:

𝜙 𝜓 𝜙→𝜓

𝖳 𝖳 𝖳
𝖳 𝖥 𝖥
𝖥 𝖳 𝖳
𝖥 𝖥 𝖳

Recall:

Definition 2.20(5) The following clauses define when an SL sentence 𝜃
is true (or false) on a model 𝔪 for 𝜃:

5. A conditional 𝜙→𝜓 is true on 𝔪 iff the LHS is false or the RHS is true
on 𝔪.

22

Truth Tables and Truth Functional Connectives

∼, ∧, ∨, → and ↔ are truth functions: functions from truth values to
truth values, often given in truth tables.

Example:

𝜙 𝜓 𝜙→𝜓

𝖳 𝖳 𝖳
𝖳 𝖥 𝖥
𝖥 𝖳 𝖳
𝖥 𝖥 𝖳

Recall:

Definition 2.20(5) The following clauses define when an SL sentence 𝜃
is true (or false) on a model 𝔪 for 𝜃:

5. A conditional 𝜙→𝜓 is true on 𝔪 iff the LHS is false or the RHS is true
on 𝔪.

What are the truth tables for the other truth functional connectives?

23

Logical Truth

Distinguish three types of sentences of SL:

Definition 2.26: A sentence 𝜙 of SL is truth functionally true (TFT) iff it
is true on all models for 𝜙.

• Examples of TFT’s: 𝐴 ∨ ∼𝐴, 𝐴 ↔ 𝐴
Definition 2.27: A sentence 𝜙 of SL is truth functionally false (TFF) iff it

is false on all models for 𝜙.

• Examples of TFF’s: 𝐴 ∧∼𝐴,𝐴 ↔ ∼𝐴
Definition 2.28: A sentence 𝜙 of SL is truth functionally contingent (TFC)

iff it is true on some models for 𝜙 and false on others.

• Examples of TFC’s: 𝐴, 𝐴 ∨ 𝐵

24

TFT, TFF, or TFC and truth tables

example: (𝐴 ∨ 𝐵) → 𝐴

𝐴 B (𝐴 ∨ 𝐵) → 𝐴

𝖳 𝖳
𝖳 𝖥
𝖥 𝖳
𝖥 𝖥

25

TFT, TFF, or TFC and truth tables

example: (𝐴 ∨ 𝐵) → 𝐴

𝐴 B (𝐴 ∨ 𝐵) → 𝐴

𝖳 𝖳 𝖳
𝖳 𝖥 𝖳
𝖥 𝖳 𝖥
𝖥 𝖥 𝖳

26

TFT, TFF, or TFC and truth tables

example: (𝐴 ∧ 𝐵) → 𝐴

𝐴 B (𝐴 ∧ 𝐵) → 𝐴

𝖳 𝖳
𝖳 𝖥
𝖥 𝖳
𝖥 𝖥

27

TFT, TFF, or TFC and truth tables

example: (𝐴 ∧ 𝐵) → 𝐴

𝐴 B (𝐴 ∧ 𝐵) → 𝐴

𝖳 𝖳 𝖳
𝖳 𝖥 𝖳
𝖥 𝖳 𝖳
𝖥 𝖥 𝖳

28

TFT, TFF, or TFC and truth tables

example: ((𝐴 ∨ (𝐷→𝐵)) ∧ ∼𝐺)

𝐴 𝐵 𝐷 𝐺 ((𝐴 ∨ (𝐷→𝐵)) ∧ ∼𝐺)

𝖳 𝖳 𝖳 𝖳 𝖥
𝖳 𝖳 𝖳 𝖥 𝖳
𝖳 𝖳 𝖥 𝖳 𝖥
𝖳 𝖳 𝖥 𝖥 𝖳
𝖳 𝖥 𝖳 𝖳 𝖥
𝖳 𝖥 𝖳 𝖥 𝖳
𝖳 𝖥 𝖥 𝖳 𝖥
𝖳 𝖥 𝖥 𝖥 𝖳
𝖥 𝖳 𝖳 𝖳 𝖥
𝖥 𝖳 𝖳 𝖥 𝖳
𝖥 𝖳 𝖥 𝖳 𝖥
𝖥 𝖳 𝖥 𝖥 𝖳
𝖥 𝖥 𝖳 𝖳 𝖥
𝖥 𝖥 𝖳 𝖥 𝖥
𝖥 𝖥 𝖥 𝖳 𝖥
𝖥 𝖥 𝖥 𝖥 𝖳

29

Comments on truth tables

1. they get big, fast

• with 2 truth values and 𝑛 sentence letters, there are 2𝑛 lines on a
truth table

2. though helpful in studying simple languages such as SL, they’re less
helpful in studying more sophisticated languages

30

TFT, TFF, TFC and Informal Proofs

Example: Prove whether (𝐴 ∧ 𝐵) → 𝐴 is TFT, TFF, or TFC

31

TFT, TFF, TFC and Informal Proofs

Example: Prove whether (𝐴 ∧ 𝐵) → 𝐴 is TFT, TFF, or TFC

Proof 1:

1. Let 𝔪 be an arbitrary model of SL at which 𝐴 is true

2. So, 𝔪(𝐴 ∧ 𝐵) → 𝐴 = T (from 1, Def. 2.20(5))

3. 𝔪 was arbitrarily selected, so the point generalizes: (𝐴 ∧ 𝐵) → 𝐴 is
true at every SL model at which 𝐴 is true. (from 1,2)

4. Let 𝔪′ be an arbitrary model of SL at which 𝐴 is false

5. So, 𝔪′(𝐴 ∧ 𝐵) = F (from 4, Def. 2.20(3))

6. So, 𝔪′(𝐴 ∧ 𝐵) → 𝐴 = T (from 5, Def. 2.20(5))

7. 𝔪′ was arbitrarily selected, so the point generalizes: (𝐴 ∧ 𝐵) → 𝐴 is
true at every SL model at which 𝐴 is false.

8. At every SL model: either 𝐴 is true, or 𝐴 is false (Def. 2.20(7))

9. So, (𝐴 ∧ 𝐵) → 𝐴 is true at every SL model (from 3,7.8)

10. So, (𝐴 ∧ 𝐵) → 𝐴 is TFT (from 9, Def. 2.26)

For reference: Def. 2.20 [shorter]:

1. 𝔪(𝜙) = T iff 𝔪 assigns true to it.

2. 𝔪(∼𝜙) = T iff 𝔪(𝜙) = F.

3. 𝔪(𝜙1 ∧ 𝜙2 ∧ 𝜙3 ∧ 𝜙4 ∧… ∧ 𝜙𝑛) = T iff all conjuncts are T on 𝔪.

4. 𝔪(𝜙1 ∨𝜙2 ∨ 𝜙3 ∨ 𝜙4 ∨… ∨ 𝜙𝑛) = T iff at least one disjunct is T on 𝔪.

5. 𝔪(𝜙→𝜓) = T iff the LHS is F or the RHS is T on 𝔪.

6. 𝔪)(𝜙↔𝜓) is T on 𝔪 iff both 𝜙 and 𝜓 have the same truth value on 𝔪.

7. If a sentence is false on 𝔪 iff it’s not true on 𝔪.

32

TFT, TFF, TFC and Informal Proofs

Example: Prove whether (𝐴 ∧ 𝐵) → 𝐴 is TFT, TFF, or TFC

33

TFT, TFF, TFC and Informal Proofs

Example: Prove whether (𝐴 ∧ 𝐵) → 𝐴 is TFT, TFF, or TFC

Proof 2:

1. Suppose for reductio that there exists a model 𝔪 at which 𝔪((𝐴∧𝐵) →
𝐴) = F

2. So, 𝔪((𝐴 ∧ 𝐵) = T and 𝔪(𝐴) = F (from 1, Def. 2.20(5))

3. So, 𝔪(𝐴) = T (from 2, Def. 2.20(3))

4. So, 𝔪(𝐴) = T and 𝔪(𝐴) = F (From 2,3)

5. From the supposition at (1) we’ve derived a contraction at (5), so the
supposition at (1) must be false: there is no model at which 𝔪((𝐴 ∧
𝐵) → 𝐴) = F (from 1, 4)

6. So, (𝐴 ∧ 𝐵) → 𝐴 is TFT (from 5, Def. 2.26)

For reference: Def. 2.20 [shorter]:

1. 𝔪(𝜙) = T iff 𝔪 assigns true to it.

2. 𝔪(∼𝜙) = T iff 𝔪(𝜙) = F.

3. 𝔪(𝜙1 ∧ 𝜙2 ∧ 𝜙3 ∧ 𝜙4 ∧… ∧ 𝜙𝑛) = T iff all conjuncts are T on 𝔪.

4. 𝔪(𝜙1 ∨𝜙2 ∨ 𝜙3 ∨ 𝜙4 ∨… ∨ 𝜙𝑛) = T iff at least one disjunct is T on 𝔪.

5. 𝔪(𝜙→𝜓) = T iff the LHS is F or the RHS is T on 𝔪.

6. 𝔪)(𝜙↔𝜓) is T on 𝔪 iff both 𝜙 and 𝜓 have the same truth value on 𝔪.

7. If a sentence is false on 𝔪 iff it’s not true on 𝔪.

34

TFT, TFF, TFC and Informal Proofs

Prove whether (𝐴 ∨ 𝐵) → (𝐵 ∨ 𝐶) is TFT, TFF, or TFC

35

TFT, TFF, TFC and Informal Proofs

Prove whether (𝐴 ∨ 𝐵) → (𝐵 ∨ 𝐶) is TFT, TFF, or TFC

Proof:

1. Let 𝔪 be a model that makes 𝐶 true

2. So, 𝔪(𝐵 ∨ 𝐶) = T (From 1, Def. 2.20.(4))

3. So, 𝔪((𝐴 ∨ 𝐵) → (𝐵 ∨ 𝐶)) = T (from 2, Def. 2.20(5))

4. So, there’s at least one model that makes (𝐴 ∨ 𝐵) → (𝐵 ∨ 𝐶) true
(from 3)

5. Let 𝔪′ be a model that makes 𝐴 true, and makes 𝐵 and 𝐶 false

6. So, 𝔪′(𝐴 ∨ 𝐵) = T (from 5, Def. 2.20(4))

7. So, 𝔪′(𝐵 ∨ 𝐶) = F (from 5, Def. 2.20(4))

8. So, 𝔪′((𝐴 ∨ 𝐵) → (𝐵 ∨ 𝐶)) = F (from 6,7, Def. 2.20(5))

9. So, there’s at least one model that makes (𝐴 ∨ 𝐵) → (𝐵 ∨ 𝐶) false
(from 9)

10. So, (𝐴 ∨ 𝐵) → (𝐵 ∨ 𝐶) is TFC (from 4,10, Def. 2.28)

For reference: Def. 2.20 [shorter]:

1. 𝔪(𝜙) = T iff 𝔪 assigns true to it.

2. 𝔪(∼𝜙) = T iff 𝔪(𝜙) = F.

3. 𝔪(𝜙1 ∧ 𝜙2 ∧ 𝜙3 ∧ 𝜙4 ∧… ∧ 𝜙𝑛) = T iff all conjuncts are T on 𝔪.

4. 𝔪(𝜙1 ∨𝜙2 ∨ 𝜙3 ∨ 𝜙4 ∨… ∨ 𝜙𝑛) = T iff at least one disjunct is T on 𝔪.

5. 𝔪(𝜙→𝜓) = T iff the LHS is F or the RHS is T on 𝔪.

6. 𝔪)(𝜙↔𝜓) is T on 𝔪 iff both 𝜙 and 𝜓 have the same truth value on 𝔪.

7. If a sentence is false on 𝔪 iff it’s not true on 𝔪.

36

TFT, TFF, TFC and Informal Proofs

Prove whether 𝐴 ↔ ∼𝐴 is TFT, TFF, or TFC

37

TFT, TFF, TFC and Informal Proofs

Prove whether 𝐴 ↔ ∼𝐴 is TFT, TFF, or TFC

Proof 1:

1. Let 𝔪 be an arbitrary model of SL; either 𝔪(𝐴) = T, or 𝔪(𝐴) = F
(Def. 2.20(7))

2. Suppose 𝔪(𝐴) = T

3. So, 𝔪(∼𝐴) = F (from 2, Def. 2.20(2))

4. So, 𝔪(𝐴 ↔ ∼𝐴) = F (from 2,3, Def. 2.20(6))

5. So, if 𝔪(𝐴) = T, then 𝔪(𝐴 ↔ ∼𝐴) = F (from 2-4)

6. Now suppose that 𝔪(𝐴) = F

7. So, 𝔪(∼𝐴) = T (from 6, Def. 2.20(2))

8. So, 𝔪(𝐴 ↔ ∼𝐴) = F (from 8, Def. 2.20(6))

9. So, if 𝔪(𝐴) = F, then 𝔪(𝐴 ↔ ∼𝐴) = F (from 6-8)

10. So, 𝔪(𝐴 ↔ ∼𝐴) = F (from 1, 2-5, 6-9)

11. 𝔪 was arbitrarily chosen, so the point generalizes: at every SL model,
𝐴 ↔ ∼𝐴 is false (from 1-10)

12. So, 𝐴 ↔ ∼𝐴 is TFF (from 11, Def. 2.27)

For reference: Def. 2.20 [shorter]:
1. 𝔪(𝜙) = T iff 𝔪 assigns true to it.

2. 𝔪(∼𝜙) = T iff 𝔪(𝜙) = F.

3. 𝔪(𝜙1 ∧ 𝜙2 ∧ 𝜙3 ∧ 𝜙4 ∧… ∧ 𝜙𝑛) = T iff all conjuncts are T on 𝔪.

4. 𝔪(𝜙1 ∨𝜙2 ∨ 𝜙3 ∨ 𝜙4 ∨… ∨ 𝜙𝑛) = T iff at least one disjunct is T on 𝔪.

5. 𝔪(𝜙→𝜓) = T iff the LHS is F or the RHS is T on 𝔪.

6. 𝔪)(𝜙↔𝜓) is T on 𝔪 iff both 𝜙 and 𝜓 have the same truth value on 𝔪.

7. If a sentence is false on 𝔪 iff it’s not true on 𝔪.

38

TFT, TFF, TFC and Informal Proofs
Informal proofs are sometimes easier to construct that truth tables:

Prove whether:
(𝐴∨𝐵∨𝐶∨𝐷∨𝐸) → [(𝐴∨𝐹)∨(𝐵∨𝐹)∨(𝐶∨𝐹)∨(𝐷∨𝐹)∨(𝐸∨𝐹)]
is TFT, TFF, or TFC

NB: The truth table would have 26 = 64 lines!

39

TFT, TFF, TFC and Informal Proofs
Informal proofs are sometimes easier to construct that truth tables:

Prove whether:
(𝐴∨𝐵∨𝐶∨𝐷∨𝐸) → [(𝐴∨𝐹)∨(𝐵∨𝐹)∨(𝐶∨𝐹)∨(𝐷∨𝐹)∨(𝐸∨𝐹)]
is TFT, TFF, or TFC

NB: The truth table would have 26 = 64 lines!

Proof:

1. Let 𝔪 be an arbitrary model that makes 𝐴 ∨ 𝐵 ∨ 𝐶 ∨𝐷 ∨ 𝐸 true.

2. So, 𝔪 makes true at least one disjunct of 𝐴∨𝐵 ∨𝐶 ∨𝐷∨𝐸; let 𝜙 be
one of those disjuncts true at 𝔪. (from 1, Def. 2.20(4)).

3. So, any disjunction with 𝜙 as a disjunct is true at 𝔪; let 𝜃 be one such
disjunction (from 2, Def. 2.20(4)).

4. So, any disjunction with 𝜃 as a disjunct is true at 𝔪 (from 3, Def.
2.20(4)).

5. So, (𝐴 ∨ 𝐹) ∨ (𝐵 ∨ 𝐹) ∨ (𝐶 ∨ 𝐹) ∨ (𝐷 ∨ 𝐹) ∨ (𝐸 ∨ 𝐹) is true at 𝔪
(from 1-4).

6. So, (𝐴 ∨ 𝐵 ∨ 𝐶 ∨𝐷 ∨ 𝐸) → [(𝐴 ∨ 𝐹) ∨ (𝐵 ∨ 𝐹) ∨ (𝐶 ∨ 𝐹) ∨ (𝐷 ∨
𝐹) ∨ (𝐸 ∨ 𝐹)] is true at 𝔪 (from 5, Def. 2.20(5)).

7. 𝔪 was arbitrarily chosen, so the point generalizes: (𝐴∨𝐵∨𝐶∨𝐷∨𝐸) →
[(𝐴 ∨ 𝐹) ∨ (𝐵 ∨ 𝐹) ∨ (𝐶 ∨ 𝐹) ∨ (𝐷 ∨ 𝐹) ∨ (𝐸 ∨ 𝐹)] is true at every
SL model (from 1-6)

8. So, (𝐴 ∨ 𝐵 ∨ 𝐶 ∨𝐷 ∨ 𝐸) → [(𝐴 ∨ 𝐹) ∨ (𝐵 ∨ 𝐹) ∨ (𝐶 ∨ 𝐹) ∨ (𝐷 ∨
𝐹) ∨ (𝐸 ∨ 𝐹)] is TFT (from 7, Def. 2.26)

40

Entailment

Definition 2.38. If Δ is a set of SL sentences and 𝜃 is an SL sentence,
then the following are equivalent ways to define when Δ entails 𝜃:

1. Δ 𝜃 iff every model for Δ and 𝜃 that makes all sentences in Δ true
also makes 𝜃 true.

2. Δ 𝜃 iff every model for Δ and 𝜃 either makes at least one sentence
in Δ false or makes 𝜃 true.

41

Testing entailment with truth tables

prove: (𝐴 ∧ 𝐵) 𝐵

𝐴 𝐵 (𝐴 ∧ 𝐵) 𝐵

𝖳 𝖳
𝖳 𝖥
𝖥 𝖳
𝖥 𝖥

42

Testing entailment with truth tables

prove: (𝐴 ∧ 𝐵) 𝐵

𝐴 𝐵 (𝐴 ∧ 𝐵) 𝐵

𝖳 𝖳 𝖳
𝖳 𝖥 𝖥
𝖥 𝖳 𝖥
𝖥 𝖥 𝖥

43

Testing entailment with truth tables

prove: (𝐴 ∧ 𝐵) 𝐵

𝐴 𝐵 (𝐴 ∧ 𝐵) 𝐵

𝖳 𝖳 𝖳 𝖳
𝖳 𝖥 𝖥 𝖥
𝖥 𝖳 𝖥 𝖳
𝖥 𝖥 𝖥 𝖥

Definition 2.38. If Δ is a set of SL sentences and 𝜃 is an SL sentence,
then the following are equivalent ways to define when Δ entails 𝜃:

1. Δ 𝜃 iff every model for Δ and 𝜃 that makes all sentences in Δ true
also makes 𝜃 true.

2. Δ 𝜃 iff every model for Δ and 𝜃 either makes at least one sentence
in Δ false or makes 𝜃 true.

44

Testing entailment with truth tables

prove: 𝐴 ∨ 𝐵,∼𝐶→∼𝐴,𝐵→𝐶 𝐶

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ∼𝐶→∼𝐴 𝐵→𝐶 𝐶

𝖳 𝖳 𝖳
𝖳 𝖳 𝖥
𝖳 𝖥 𝖳
𝖳 𝖥 𝖥
𝖥 𝖳 𝖳
𝖥 𝖳 𝖥
𝖥 𝖥 𝖳
𝖥 𝖥 𝖥

45

Testing entailment with truth tables

prove: 𝐴 ∨ 𝐵,∼𝐶→∼𝐴,𝐵→𝐶 𝐶

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ∼𝐶→∼𝐴 𝐵→𝐶 𝐶

𝖳 𝖳 𝖳 𝖳 𝖳 𝖳 𝖳
𝖳 𝖳 𝖥 𝖳 𝖥 𝖥 𝖥
𝖳 𝖥 𝖳 𝖳 𝖳 𝖳 𝖳
𝖳 𝖥 𝖥 𝖳 𝖥 𝖳 𝖥
𝖥 𝖳 𝖳 𝖳 𝖳 𝖳 𝖳
𝖥 𝖳 𝖥 𝖳 𝖳 𝖥 𝖥
𝖥 𝖥 𝖳 𝖥 𝖳 𝖳 𝖳
𝖥 𝖥 𝖥 𝖥 𝖳 𝖳 𝖥

Definition 2.38. If Δ is a set of SL sentences and 𝜃 is an SL sentence,
then the following are equivalent ways to define when Δ entails 𝜃:

1. Δ 𝜃 iff every model for Δ and 𝜃 that makes all sentences in Δ true
also makes 𝜃 true.

2. Δ 𝜃 iff every model for Δ and 𝜃 either makes at least one sentence
in Δ false or makes 𝜃 true.

46

Testing entailment with informal proofs

Definition 2.38. If Δ is a set of SL sentences and 𝜃 is an SL sentence,
then the following are equivalent ways to define when Δ entails 𝜃:

1. Δ 𝜃 iff every model for Δ and 𝜃 that makes all sentences in Δ true
also makes 𝜃 true.

2. Δ 𝜃 iff every model for Δ and 𝜃 either makes at least one sentence
in Δ false or makes 𝜃 true.

Proof 1: (𝐴 ∧ 𝐵) ⊨ 𝐵

1. Let 𝔪 be an arbitrary model on which 𝐴 ∧ 𝐵 is true

2. So, 𝔪(𝐵) = T (from 1, Def. 2.20(3))

3. 𝔪 was arbitrarily chosen, so the point generalizes: every model that
makes 𝐴 ∧ 𝐵 true also makes 𝐵 true (from 1,2)

4. So, (𝐴 ∧ 𝐵) ⊨ 𝐵 (from 3, Def. 2.38)

47

Testing entailment with informal proofs

Definition 2.38. If Δ is a set of SL sentences and 𝜃 is an SL sentence,
then the following are equivalent ways to define when Δ entails 𝜃:

1. Δ 𝜃 iff every model for Δ and 𝜃 that makes all sentences in Δ true
also makes 𝜃 true.

2. Δ 𝜃 iff every model for Δ and 𝜃 either makes at least one sentence
in Δ false or makes 𝜃 true.

Proof 2: (𝐴 ∧ 𝐵) ⊨ 𝐵

1. Suppose for reductio that there exists a model 𝔪 that makes 𝐴 ∧ 𝐵
true and 𝐵 false

2. So, 𝔪(𝐴 ∧ 𝐵) = F (from 1, Def. 2.20)

3. So, 𝔪(𝐴 ∧ 𝐵) = T and 𝔪(𝐴 ∧ 𝐵) = F (from 1,2)

4. But that’s impossible: a sentence is false on 𝔪 iff it’s not true on 𝔪
(Def. 2.20(7))

5. So, reject supposition 1: there is no model that makes 𝐴 ∧ 𝐵 true and
𝐵 false

6. So, (𝐴 ∧ 𝐵) ⊨ 𝐵 (from 5, Def. 2.38)

48

Testing entailment with informal proofs

Definition 2.38. If Δ is a set of SL sentences and 𝜃 is an SL sentence,
then the following are equivalent ways to define when Δ entails 𝜃:

1. Δ 𝜃 iff every model for Δ and 𝜃 that makes all sentences in Δ true
also makes 𝜃 true.

2. Δ 𝜃 iff every model for Δ and 𝜃 either makes at least one sentence
in Δ false or makes 𝜃 true.

Proof: 𝐴,𝐴 → 𝐵 ⊨ 𝐵

1. Let 𝔪 be an arbitrary model that makes true both 𝐴 and 𝐴 → 𝐵
2. 𝔪(𝐴 → 𝐵) = T iff either: 𝔪(𝐴) = F, or 𝔪(𝐵) = T. (Def. 2.20(5)).

3. 𝔪(𝐴) = T (from 1), and 𝐴 can’t be both true and false at 𝔪 (from Def.
2.20(7))

4. So, 𝔪(𝐵) = T

5. 𝔪 was arbitrarily chosen, so the point generalizes: every model that
makes both 𝐴 and 𝐴 → 𝐵 true also makes 𝐵 true (from 1-4)

6. So, 𝐴,𝐴 → 𝐵 ⊨ 𝐵 (from 5, Def. 2.38)

49

Testing entailment with informal proofs

Definition 2.38. If Δ is a set of SL sentences and 𝜃 is an SL sentence,
then the following are equivalent ways to define when Δ entails 𝜃:

1. Δ 𝜃 iff every model for Δ and 𝜃 that makes all sentences in Δ true
also makes 𝜃 true.

2. Δ 𝜃 iff every model for Δ and 𝜃 either makes at least one sentence
in Δ false or makes 𝜃 true.

prove: 𝐴 ∨ 𝐵,∼𝐶→∼𝐴,𝐵→𝐶 𝐶

Proof:

1. Suppose for reductio that there exists a model 𝔪 that makes 𝐴 ∨
𝐵,∼𝐶→∼𝐴,𝐵→𝐶 all true, and 𝐶 is false.

2. Since 𝔪(𝐵 → 𝐶) = T and 𝔪(𝐶) = F, 𝔪(𝐵) = F. (1, Def. 2.20)

3. Since 𝔪(𝐴 ∨ 𝐵) = T and 𝔪(𝐵) = F, 𝔪(𝐴) = T (1,2, Def. 2.20)

4. Since 𝔪(𝐶) = F, 𝔪(∼𝐶) = T (from 1, Def. 2.20)

5. Since 𝔪(∼𝐶) = T and 𝔪(∼𝐶 → ∼𝐴) = T, 𝔪(∼𝐴) = T (1,4, Def.
2.20)

6. So, 𝔪(𝐴) = T and 𝔪(∼𝐴) = F (from 3,5)

7. But no model makes a sentence both true and false, so that’s impossible
(from Def. 2.20)

8. So, reject the supposition at (1): there does not exist a model that
makes
𝐴 ∨ 𝐵,∼𝐶→∼𝐴,𝐵→𝐶 all true, and 𝐶 is false. (1-7)

9. So, 𝐴 ∨ 𝐵,∼𝐶→∼𝐴,𝐵→𝐶 ⊨ 𝐶

50

Your turn

Prove, then check your answer with a truth table:

1. 𝐴 𝐴
2. 𝐴 𝐴 ∨ 𝐵
3. ∼𝐴 𝐴 → 𝐵
4. 𝐴 ↔ 𝐵 𝐴 → 𝐵
5. 𝐴,𝐴 → 𝐵 𝐵
6. 𝐴 ∨∼𝐴
7. 𝐴 ∧ ∼𝐴 𝐵

51

SL Exportation Theorem: For all SL sentences 𝜙 and 𝜃, 𝜙 𝜃 iff
𝜙→𝜃

52

SL Exportation Theorem: For all SL sentences 𝜙 and 𝜃, 𝜙 𝜃 iff
𝜙→𝜃

How to prove a biconditional (e.g. 𝜙 iff 𝜓):

• 𝜙 iff 𝜓 is equivalent to: (if 𝜙 then 𝜓) and (if 𝜓 then 𝜙)

• we prove the biconditional by proving the two conditionals

53

SL Exportation Theorem: For all SL sentences 𝜙 and 𝜃, 𝜙 𝜃 iff
𝜙→𝜃

How to prove a biconditional (e.g. 𝜙 iff 𝜓):

• 𝜙 iff 𝜓 is equivalent to: (if 𝜙 then 𝜓) and (if 𝜓 then 𝜙)

• we prove the biconditional by proving the two conditionals

How to prove a conditional (e.g. if 𝜙 then 𝜓):

1. assume that the LHS (𝜙) of the conditional is true

2. on the basis of that information, derive the RHS (𝜓) of the conditional

3. conclude that ‘if 𝜙 then 𝜓’

54

SL Exportation Theorem: For all SL sentences 𝜙 and 𝜃, 𝜙 𝜃 iff
𝜙→𝜃

Proof:

First step: prove that if 𝜙 𝜃 then 𝜙→𝜃

Second step: prove that if 𝜙→𝜃 then 𝜙 𝜃

55

Prove:

Theorem 2.49.(4) If 𝜙 and 𝜓 are SL sentences, then 𝜙 𝜓 iff 𝜙,∼𝜓
(𝐴 ∧ ∼𝐴)

56

OTHER RELATIONS BETWEEN SL SENTENCES

Truth functionally equivalent: Two sentences 𝜃 and 𝜙 are truth functionally
equivalent (TFE) iff all models for 𝜃 and 𝜙 assign them the same truth
value, which is the same as saying they entail each other: both 𝜃 𝜙
and 𝜙 𝜃.

example: 𝐴, (𝐴 ∨ 𝐵) ∧ ∼𝐵

57

OTHER RELATIONS BETWEEN SL SENTENCES

Truth functionally equivalent: Two sentences 𝜃 and 𝜙 are truth functionally
equivalent (TFE) iff all models for 𝜃 and 𝜙 assign them the same truth
value, which is the same as saying they entail each other: both 𝜃 𝜙
and 𝜙 𝜃.

example: 𝐴, (𝐴 ∨ 𝐵) ∧ ∼𝐵

Truth Functionally Equivalent sentences and Truth Tables:

𝐴 𝐵 𝐴 𝐴 ∨ (𝐵 ∧ ∼𝐵)

𝖳 𝖳 𝖳 𝖳
𝖳 𝖥 𝖳 𝖳
𝖥 𝖳 𝖥 𝖥
𝖥 𝖥 𝖥 𝖥

58

OTHER RELATIONS BETWEEN SL SENTENCES

Truth functionally contradictory: Two sentences 𝜃 and 𝜙 are truth function-
ally contradictory iff all models for 𝜃 and 𝜙 assign them opposite truth
values, which is the same as saying that each sentence is TFE to the
negation of the other.

example: (𝐴 ↔ ∼𝐵), ((𝐴 ∧ 𝐵) ∨ (∼𝐴 ∧ ∼𝐵))

59

OTHER RELATIONS BETWEEN SL SENTENCES

Truth functionally contradictory: Two sentences 𝜃 and 𝜙 are truth function-
ally contradictory iff all models for 𝜃 and 𝜙 assign them opposite truth
values, which is the same as saying that each sentence is TFE to the
negation of the other.

example: (𝐴 ↔ ∼𝐵), ((𝐴 ∧ 𝐵) ∨ (∼𝐴 ∧ ∼𝐵))

Truth Functionally Contradictory sentences and Truth Tables:

𝐴 𝐵 (𝐴 ↔ ∼𝐵) ((𝐴 ∧ 𝐵) ∨ (∼𝐴 ∧ ∼𝐵))

𝖳 𝖳 𝖥 𝖳
𝖳 𝖥 𝖳 𝖥
𝖥 𝖳 𝖳 𝖥
𝖥 𝖥 𝖥 𝖳

60

OTHER RELATIONS BETWEEN SL SENTENCES

Truth functionally contrary: Two sentences 𝜃 and 𝜙 are truth functionally
contrary iff they cannot both be true in the same model 𝔪. (This is
the same as saying that each entails the negation of the other.)

example: (𝐴 ∧ 𝐵), (𝐴 ∧ ∼𝐵)

61

OTHER RELATIONS BETWEEN SL SENTENCES

Truth functionally contrary: Two sentences 𝜃 and 𝜙 are truth functionally
contrary iff they cannot both be true in the same model 𝔪. (This is
the same as saying that each entails the negation of the other.)

example: (𝐴 ∧ 𝐵), (𝐴 ∧ ∼𝐵)

Truth Functionally Contrary sentences and Truth Tables:

𝐴 𝐵 (𝐴 ∧ 𝐵) (𝐴 ∧ ∼𝐵)

𝖳 𝖳 𝖳 𝖥
𝖳 𝖥 𝖥 𝖳
𝖥 𝖳 𝖥 𝖥
𝖥 𝖥 𝖥 𝖥

62

OTHER RELATIONS BETWEEN SL SENTENCES

Truth functionally subcontrary: Two sentences 𝜃 and 𝜙 are truth function-
ally subcontrary iff they cannot both be false in the same model 𝔪.
(This is the same as saying that the negation of each entails the other.)

example: (𝐴 → 𝐵), (𝐴 → ∼𝐵)

63

OTHER RELATIONS BETWEEN SL SENTENCES

Truth functionally subcontrary: Two sentences 𝜃 and 𝜙 are truth function-
ally subcontrary iff they cannot both be false in the same model 𝔪.
(This is the same as saying that the negation of each entails the other.)

example: (𝐴 → 𝐵), (𝐴 → ∼𝐵)

Truth Functionally Subcontrary sentences and Truth Tables:

𝐴 𝐵 (𝐴 → 𝐵) (𝐴 → ∼𝐵)

𝖳 𝖳 𝖳 𝖥
𝖳 𝖥 𝖥 𝖳
𝖥 𝖳 𝖳 𝖳
𝖥 𝖥 𝖳 𝖳

64

OTHER RELATIONS BETWEEN SL SENTENCES

Truth functionally independent: Two sentences 𝜃 and 𝜙 are truth function-
ally independent iff none of the above hold (including entailments), i.e.
iff there are four models:

1. A model in which both 𝜃 and 𝜙 are true;
2. A model in which both 𝜃 and 𝜙 are false;
3. A model in which 𝜃 is true and 𝜙 is false; and
4. A model in which 𝜃 is false and 𝜙 is true.

example: (𝐴 ∨ 𝐵), (𝐴 ∨ 𝐶)

65

OTHER RELATIONS BETWEEN SL SENTENCES

Truth functionally independent: Two sentences 𝜃 and 𝜙 are truth function-
ally independent iff none of the above hold (including entailments), i.e.
iff there are four models:

1. A model in which both 𝜃 and 𝜙 are true;
2. A model in which both 𝜃 and 𝜙 are false;
3. A model in which 𝜃 is true and 𝜙 is false; and
4. A model in which 𝜃 is false and 𝜙 is true.

example: (𝐴 ∨ 𝐵), (𝐴 ∨ 𝐶)

Truth Functionally Independent sentences and Truth Tables:

𝐴 𝐵 𝐶 (𝐴 ∨ 𝐵) (𝐴 ∨ 𝐶)

𝖳 𝖳 𝖳 𝖳 𝖳
𝖳 𝖳 𝖥 𝖳 𝖳
𝖳 𝖥 𝖳 𝖳 𝖳
𝖳 𝖥 𝖥 𝖳 𝖳
𝖥 𝖳 𝖳 𝖳 𝖳
𝖥 𝖳 𝖥 𝖳 𝖥
𝖥 𝖥 𝖳 𝖥 𝖳
𝖥 𝖥 𝖥 𝖥 𝖥

66

Truth functionally equivalent: Two sentences 𝜃 and 𝜙 are truth functionally
equivalent (TFE) iff all models for 𝜃 and 𝜙 assign them the same truth
value, which is the same as saying they entail each other: both 𝜃 𝜙
and 𝜙 𝜃.

Truth functionally contradictory: Two sentences 𝜃 and 𝜙 are truth function-
ally contradictory iff all models for 𝜃 and 𝜙 assign them opposite truth
values, which is the same as saying that each sentence is TFE to the
negation of the other.

Truth functionally contrary: Two sentences 𝜃 and 𝜙 are truth functionally
contrary iff they cannot both be true in the same model 𝔪. (This is
the same as saying that each entails the negation of the other.)

Truth functionally subcontrary: Two sentences 𝜃 and 𝜙 are truth function-
ally subcontrary iff they cannot both be false in the same model 𝔪.
(This is the same as saying that the negation of each entails the other.)

Truth functionally independent: Two sentences 𝜃 and 𝜙 are truth function-
ally independent iff none of the above hold (including entailments), i.e.
iff there are four models:

1. A model in which both 𝜃 and 𝜙 are true;
2. A model in which both 𝜃 and 𝜙 are false;
3. A model in which 𝜃 is true and 𝜙 is false; and
4. A model in which 𝜃 is false and 𝜙 is true.

Question: how are these relations related?

67

Truth functionally equivalent: Two sentences 𝜃 and 𝜙 are truth functionally
equivalent (TFE) iff all models for 𝜃 and 𝜙 assign them the same truth
value, which is the same as saying they entail each other: both 𝜃 𝜙
and 𝜙 𝜃.

Truth functionally contradictory: Two sentences 𝜃 and 𝜙 are truth function-
ally contradictory iff all models for 𝜃 and 𝜙 assign them opposite truth
values, which is the same as saying that each sentence is TFE to the
negation of the other.

Truth functionally contrary: Two sentences 𝜃 and 𝜙 are truth functionally
contrary iff they cannot both be true in the same model 𝔪. (This is
the same as saying that each entails the negation of the other.)

Truth functionally subcontrary: Two sentences 𝜃 and 𝜙 are truth function-
ally subcontrary iff they cannot both be false in the same model 𝔪.
(This is the same as saying that the negation of each entails the other.)

Truth functionally independent: Two sentences 𝜃 and 𝜙 are truth function-
ally independent iff none of the above hold (including entailments), i.e.
iff there are four models:

1. A model in which both 𝜃 and 𝜙 are true;
2. A model in which both 𝜃 and 𝜙 are false;
3. A model in which 𝜃 is true and 𝜙 is false; and
4. A model in which 𝜃 is false and 𝜙 is true.

68

Question: What relations hold among these sentences?

1. 𝐴
2. 𝐴 ∧ 𝐵
3. ∼𝐴 ∧ 𝐵

4. 𝐴→𝐶
5. 𝐴→∼𝐶
6. (𝐴 ∧ 𝐵) ∨ 𝐶

7. 𝐷 ∧∼𝐷

69

Relations between SL sentences:

Entailment: If Δ is a set of SL sentences and 𝜃 is an SL sentence, then the following
are equivalent ways to define when Δ entails 𝜃:

1. Δ 𝜃 iff every model for Δ and 𝜃 that makes all sentences in Δ true also
makes 𝜃 true.

2. Δ 𝜃 iff every model for Δ and 𝜃 either makes at least one sentence in Δ
false or makes 𝜃 true.

Truth functionally equivalent: Two sentences 𝜃 and 𝜙 are truth functionally equivalent
(TFE) iff all models for 𝜃 and 𝜙 assign them the same truth value, which is the
same as saying they entail each other: both 𝜃 𝜙 and 𝜙 𝜃.

Truth functionally contradictory: Two sentences 𝜃 and 𝜙 are truth functionally contra-
dictory iff all models for 𝜃 and 𝜙 assign them opposite truth values, which is the
same as saying that each sentence is TFE to the negation of the other.

Truth functionally contrary: Two sentences 𝜃 and 𝜙 are truth functionally contrary iff
they cannot both be true in the same model 𝔪. (This is the same as saying that
each entails the negation of the other.)

Truth functionally subcontrary: Two sentences 𝜃 and 𝜙 are truth functionally subcontrary
iff they cannot both be false in the same model 𝔪. (This is the same as saying
that the negation of each entails the other.)

Truth functionally independent: Two sentences 𝜃 and 𝜙 are truth functionally indepen-
dent iff none of the above hold (including entailments), i.e. iff there are four
models:

1. A model in which both 𝜃 and 𝜙 are true;
2. A model in which both 𝜃 and 𝜙 are false;
3. A model in which 𝜃 is true and 𝜙 is false; and
4. A model in which 𝜃 is false and 𝜙 is true.

70

Recursive Definitions and Recursive Proofs

Definition 1.1. A recursive definition has three clauses:

1. the base clause(s), which specifies a set of objects which unqualifiedly
count as meeting the definition,

2. the generating clause(s), which specifies one or more ways of generating
(or finding) new objects that meet the definition, and

3. the closure clause, which specifies that something meets the definition
only if it can be shown to meet the definition by applications of the first
two clauses.

71

Recursive Definitions and Recursive Proofs

Definition 1.1. A recursive definition has three clauses:

1. the base clause(s), which specifies a set of objects which unqualifiedly
count as meeting the definition,

2. the generating clause(s), which specifies one or more ways of generating
(or finding) new objects that meet the definition, and

3. the closure clause, which specifies that something meets the definition
only if it can be shown to meet the definition by applications of the first
two clauses.

Definition 2.2. The sentences of SL are given by the following recursive
definition:

Base Clause: Every sentence letter is a sentence.

Generating Clauses:

1. If 𝜙 is a sentence, then so is ∼𝜙.
2. If 𝜙 and 𝜃 are sentences, then so are both (𝜙→𝜃) and (𝜙↔𝜃).
3. If all of 𝜙1, 𝜙2, 𝜙3, 𝜙4,… , 𝜙𝑛 are sentences (the list must include at

least two sentences and be finite), then so are (𝜙1 ∧ 𝜙2 ∧ 𝜙3 ∧ 𝜙4 ∧… ∧ 𝜙𝑛)
and (𝜙1 ∨ 𝜙2 ∨ 𝜙3 ∨ 𝜙4 ∨… ∨ 𝜙𝑛).

Closure Clause: A sequence of symbols is an SL sentence iff its being a sen-
tence follows from the previous two clauses.

72

Recursive Definitions and Recursive Proofs

Definition 1.2. Let Δ be some set whose members are defined recursively.
To prove that all members of Δ have some property 𝜙 we use a recursive
proof , which works as follows:

Base Step: Show that everything identified by the base clause of the recursive
definition has 𝜙.

Inheritance Step: Show that 𝜙 is inherited; i.e., show that if the previous ob-
jects from which new objects are generated (or found) by the generating
clause have 𝜙 then the new ones have 𝜙 too.

Closure Step: Finally, show that completing the base and inheritance steps
is sufficient to show that all members of Δ have 𝜙.

73

Recursive Proof (example 1)

Prove: every (official) sentence of SL has exactly as many left parentheses
as right.

74

Recursive Proof (example 1)

Prove: every (official) sentence of SL has exactly as many left parentheses
as right.

Base Step: All atomic sentences (i.e., sentence letters) of SL have zero left
parentheses and zero right parentheses. And, of course, 0 = 0.

Inheritance Step:

Closure Step:

75

Recursive Proof (example 1)

Prove: every (official) sentence of SL has exactly as many left parentheses
as right.

Base Step: All atomic sentences (i.e., sentence letters) of SL have zero left
parentheses and zero right parentheses. And, of course, 0 = 0.

Inheritance Step:

Recursive Assumption: Suppose 𝜙 and 𝜃, 𝜃1, 𝜃2,… , 𝜃𝑛 each have exactly
as many left parentheses as right, and are of order 𝑘 or less.

[show: given RA, any sentence of SL generated from 𝜃, 𝜃1, 𝜃2,… , 𝜃𝑛
– any sentence of order 𝑘 + 1 – must have exactly as many left
parentheses as right]

Closure Step:

76

Recursive Proof (example 1)

Prove: every (official) sentence of SL has exactly as many left parentheses
as right.

Base Step: All atomic sentences (i.e., sentence letters) of SL have zero left
parentheses and zero right parentheses. And, of course, 0 = 0.

Inheritance Step:

Recursive Assumption: Suppose 𝜙 and 𝜃, 𝜃1, 𝜃2,… , 𝜃𝑛 each have exactly
as many left parentheses as right, and are of order 𝑘 or less.

[show: given RA, any sentence of SL generated from 𝜃, 𝜃1, 𝜃2,… , 𝜃𝑛
– any sentence of order 𝑘 + 1 – must have exactly as many left
parentheses as right]

Closure Step: [conclude that the Base and Inheritance steps are sufficient to
establish our target theorem]

77

Recursive Proof (example 1)

Prove: every (official) sentence of SL has exactly as many left parentheses
as right.

Base Step: All atomic sentences (i.e., sentence letters) of SL have zero left
parentheses and zero right parentheses. And, of course, 0 = 0.

Inheritance Step:

Recursive Assumption: Suppose 𝜙 and 𝜃, 𝜃1, 𝜃2,… , 𝜃𝑛 each have exactly
as many left parentheses as right, and are of order 𝑘 or less. We
want to show that sentences of order 𝑘 + 1 have the same property.

Negation: [show: given RA, ∼𝜃 must have exactly as many left paren-
theses as right]

Conditional: [show: given RA, (𝜙 → 𝜃) must have exactly as many left
parentheses as right]

Biconditional: [show: given RA, (𝜙 ↔ 𝜃) must have exactly as many
left parentheses as right]

Disjunction: [show: given RA, (𝜃1 ∨ 𝜃2 ∨ ... ∨ 𝜃𝑛) must have exactly as
many left parentheses as right]

Conjunction: [show: given RA, (𝜃1 ∧ 𝜃2 ∧ ... ∧ 𝜃𝑛) must have exactly as
many left parentheses as right]

Closure Step:

78

Recursive Proof (example 1)

Prove: every (official) sentence of SL has exactly as many left parentheses
as right.

Base Step: All atomic sentences (i.e., sentence letters) of SL have zero left
parentheses and zero right parentheses. And, of course, 0 = 0.

Inheritance Step:

Recursive Assumption: Suppose 𝜙 and 𝜃, 𝜃1, 𝜃2,… , 𝜃𝑛 each have exactly
as many left parentheses as right, and are of order 𝑘 or less. We
want to show that sentences of order 𝑘 + 1 have the same property.

Negation: [show: given RA, ∼𝜃 must have exactly as many left paren-
theses as right]

Conditional: [show: given RA, (𝜙 → 𝜃) must have exactly as many left
parentheses as right]

Biconditional: [show: given RA, (𝜙 ↔ 𝜃) must have exactly as many
left parentheses as right]

Disjunction: [show: given RA, (𝜃1 ∨ 𝜃2 ∨ ... ∨ 𝜃𝑛) must have exactly as
many left parentheses as right]

Conjunction: [show: given RA, (𝜃1 ∧ 𝜃2 ∧ ... ∧ 𝜃𝑛) must have exactly as
many left parentheses as right]

Closure Step: Because the inheritance step covers all the ways of generating
an SL sentence, for all SL sentences the number of left parentheses is
the same as the number of right parentheses.

79

Recursive Proof (example 1)

Prove: every (official) sentence of SL has exactly as many left parentheses
as right.

Base Step: All atomic sentences (i.e., sentence letters) of SL have zero left
parentheses and zero right parentheses. And, of course, 0 = 0.

Inheritance Step:

Recursive Assumption: Suppose 𝜙 and 𝜃, 𝜃1, 𝜃2,… , 𝜃𝑛 each have exactly
as many left parentheses as right, and are of order 𝑘 or less. We
want to show that sentences of order 𝑘 + 1 have the same property.

Negation: New sentence ∼𝜙 of order 𝑘 + 1 includes all and only the
parentheses in sentence 𝜙 of order 𝑘. By our Recursive Assump-
tion, are equal in number 𝜙 has the same number of left and right
parentheses.

Conditional: [show: given RA, (𝜙 → 𝜃) must have exactly as many left
parentheses as right]

Biconditional: [show: given RA, (𝜙 ↔ 𝜃) must have exactly as many
left parentheses as right]

Disjunction: [show: given RA, (𝜃1 ∨ 𝜃2 ∨ ... ∨ 𝜃𝑛) must have exactly as
many left parentheses as right]

Conjunction: [show: given RA, (𝜃1 ∧ 𝜃2 ∧ ... ∧ 𝜃𝑛) must have exactly as
many left parentheses as right]

Closure Step: Because the inheritance step covers all the ways of generating
an SL sentence, for all SL sentences the number of left parentheses is
the same as the number of right parentheses.

80

Recursive Proof (example 1)

Prove: every (official) sentence of SL has exactly as many left parentheses
as right.

Base Step: All atomic sentences (i.e., sentence letters) of SL have zero left
parentheses and zero right parentheses. And, of course, 0 = 0.

Inheritance Step:

Recursive Assumption: Suppose 𝜙 and 𝜃, 𝜃1, 𝜃2,… , 𝜃𝑛 each have exactly
as many left parentheses as right, and are of order 𝑘 or less. We
want to show that sentences of order 𝑘 + 1 have the same property.

Negation: New sentence ∼𝜙 of order 𝑘 + 1 includes all and only the
parentheses in sentence 𝜙 of order 𝑘. By our Recursive Assump-
tion, are equal in number 𝜙 has the same number of left and right
parentheses.

Conditional: New sentence (𝜙 → 𝜃) of order 𝑘+1 includes all and only
the parentheses in sentences 𝜙 and 𝜃 (of order 𝑘 or less) together
with one new pair of parentheses. By our recursive assumption, 𝜙
and 𝜃 each have the same number of left and right parentheses, so
(𝜙 → 𝜃) has the same number of left and right parentheses.

Biconditional: New sentence (𝜙 ↔ 𝜃) of order 𝑘+1 includes all and only
the parentheses in sentences 𝜙 and 𝜃 (of order 𝑘 or less) together
with one new pair of parentheses. By our recursive assumption, 𝜙
and 𝜃 each have the same number of left and right parentheses, so
(𝜙 ↔ 𝜃) has the same number of left and right parentheses.

81

Disjunction: New sentence (𝜃1 ∨ 𝜃2 ∨ ... ∨ 𝜃𝑛) of order 𝑘 + 1 includes
all and only the parentheses in sentences 𝜃1, 𝜃2, ..., 𝜃𝑛 (of order 𝑘 or
less) together with one new pair of parentheses. By our recursive
assumption, 𝜃1, 𝜃2, ..., 𝜃𝑛 each have the same number of left and
right parentheses, so (𝜃1∨𝜃2∨ ... ∨ 𝜃𝑛) has the same number of left
and right parentheses.

Conjunction: New sentence (𝜃1 ∧ 𝜃2 ∧ ... ∧ 𝜃𝑛) of order 𝑘 + 1 includes
all and only the parentheses in sentences 𝜃1, 𝜃2, ..., 𝜃𝑛 (of order 𝑘 or
less) together with one new pair of parentheses. By our recursive
assumption, 𝜃1, 𝜃2, ..., 𝜃𝑛 each have the same number of left and
right parentheses, so (𝜃1∧𝜃2∧ ... ∧ 𝜃𝑛) has the same number of left
and right parentheses.

Closure Step: Because the inheritance step covers all the ways of generating
an SL sentence, for all SL sentences the number of left parentheses is
the same as the number of right parentheses.

82

Recursive Proof (example 2)

Prove: In every SL sentence there is a subsentence which is TFC.

Base step:

Inheritance step:

Recursive Assumption:

Negation:

Conditional:

Biconditional:

Disjunction:

Conjunction:

Closure step:

83

Recursive Proof (example 2)

Prove: In every SL sentence there is a subsentence which is TFC.

Base step: In the base case 𝜙 is atomic, and all atomic sentences are TFC.

Inheritance step:

Recursive Assumption:

Negation:

Conditional:

Biconditional:

Disjunction:

Conjunction:

Closure step:

84

Recursive Proof (example 2)

Prove: In every SL sentence there is a subsentence which is TFC.

Base step: In the base case 𝜙 is atomic, and all atomic sentences are TFC.

Inheritance step:

Recursive Assumption: Assume that 𝜙, 𝜙1, 𝜙2, ..., 𝜙𝑛 are sentences of SL
of order 𝐾 or less, each of which contains a subsentence which is
TFC.

Negation:

Conditional:

Biconditional:

Disjunction:

Conjunction:

Closure step:

85

Recursive Proof (example 2)

Prove: In every SL sentence there is a subsentence which is TFC.

Base step: In the base case 𝜙 is atomic, and all atomic sentences are TFC.

Inheritance step:

Recursive Assumption: Assume that 𝜙, 𝜙1, 𝜙2, ..., 𝜙𝑛 are sentences of SL
of order 𝐾 or less, each of which contains a subsentence which is
TFC.

Negation: ∼𝜙 is a sentence of order 𝑘 + 1 that contains 𝜙, which by
assumption contains a TFC subsentence. So by the transitivity of
the subsentence relation, ∼𝜙 contains a TFC as a subsentence as
well.

Conditional: (𝜙1 → 𝜙2) is a sentence of order 𝑘 + 1 that contains 𝜙1
and 𝜙2, which by assumption each contain a TFC subsentence. So
by the transitivity of the subsentence relation, (𝜙1 → 𝜙2) contains
a TFC as a subsentence as well.

Biconditional: (𝜙1 ↔ 𝜙2) is a sentence of order 𝑘 + 1 that contains 𝜙1
and 𝜙2, which by assumption each contain a TFC subsentence. So
by the transitivity of the subsentence relation, (𝜙1 ↔ 𝜙2) contains
a TFC as a subsentence as well.

Disjunction: (𝜙1∨𝜙2∨...∨𝜙𝑛) is a sentence of order 𝑘+1 that contains
𝜙1, 𝜙2, ..., 𝜙𝑛, which by assumption each contain a TFC subsentence.
So by the transitivity of the subsentence relation, (𝜙1∨𝜙2∨...∨𝜙𝑛)
contains a TFC as a subsentence as well.

Conjunction: (𝜙1∧𝜙2∧...∧𝜙𝑛) is a sentence of order 𝑘+1 that contains
𝜙1, 𝜙2, ..., 𝜙𝑛, which by assumption each contain a TFC subsentence.
So by the transitivity of the subsentence relation, (𝜙1∧𝜙2∧...∧𝜙𝑛)
contains a TFC as a subsentence as well.

Closure step:

86

Recursive Proof (example 2)

Prove: In every SL sentence there is a subsentence which is TFC.

Base step: In the base case 𝜙 is atomic, and all atomic sentences are TFC.

Inheritance step:

Recursive Assumption: Assume that 𝜙, 𝜙1, 𝜙2, ..., 𝜙𝑛 are sentences of SL
of order 𝐾 or less, each of which contains a subsentence which is
TFC.

Negation: ∼𝜙 is a sentence of order 𝑘 + 1 that contains 𝜙, which by
assumption contains a TFC subsentence. So by the transitivity of
the subsentence relation, ∼𝜙 contains a TFC as a subsentence as
well.

Conditional: (𝜙1 → 𝜙2) is a sentence of order 𝑘 + 1 that contains 𝜙1
and 𝜙2, which by assumption each contain a TFC subsentence. So
by the transitivity of the subsentence relation, (𝜙1 → 𝜙2) contains
a TFC as a subsentence as well.

Biconditional: (𝜙1 ↔ 𝜙2) is a sentence of order 𝑘 + 1 that contains 𝜙1
and 𝜙2, which by assumption each contain a TFC subsentence. So
by the transitivity of the subsentence relation, (𝜙1 ↔ 𝜙2) contains
a TFC as a subsentence as well.

Disjunction: (𝜙1∨𝜙2∨...∨𝜙𝑛) is a sentence of order 𝑘+1 that contains
𝜙1, 𝜙2, ..., 𝜙𝑛, which by assumption each contain a TFC subsentence.
So by the transitivity of the subsentence relation, (𝜙1∨𝜙2∨...∨𝜙𝑛)
contains a TFC as a subsentence as well.

Conjunction: (𝜙1∧𝜙2∧...∧𝜙𝑛) is a sentence of order 𝑘+1 that contains
𝜙1, 𝜙2, ..., 𝜙𝑛, which by assumption each contain a TFC subsentence.
So by the transitivity of the subsentence relation, (𝜙1∧𝜙2∧...∧𝜙𝑛)
contains a TFC as a subsentence as well.

Closure step: These are all the ways of constructing SL sentences of order
𝑘 + 1 out of sentences of order 𝑘 or less, and in each case if if the order

87

𝑘 or less sentences each have a subsentence which is TFC, then so does
the new order 𝑘 + 1 sentence. So, in every SL sentence there is a TFC
subsentence.

88

Recursive Proof (example 3)

Prove: If two models 𝔪 and 𝔪∗ assign the same truth values to each of
the sentence letters of 𝜙, then 𝜙 is true in 𝔪 iff 𝜙 is true in 𝔪∗, i.e. 𝔪 and
𝔪∗ agree on all the sentence letters in 𝜃.

Base step:

Inheritance step:

Recursive Assumption:

Negation:

Conditional:

Biconditional:

Disjunction:

Conjunction:

Closure step:

89

Recursive Proof (example 3)

Prove: If two models 𝔪 and 𝔪∗ assign the same truth values to each of
the sentence letters in 𝜙, then 𝜙 is true in 𝔪 iff 𝜙 is true in 𝔪∗, i.e. 𝔪 and
𝔪∗ agree on all the sentence letters in 𝜙.

Base step: In the base case 𝜙 is an atomic sentence letter. By assumption 𝔪
and 𝔪∗ agree on all the sentence letters of SL. Thus, they agree on 𝜙.
So, 𝜙 is true in 𝔪 iff 𝜙 is true in 𝔪∗.

Inheritance step:

Recursive Assumption:

Negation:

Conditional:

Biconditional:

Disjunction:

Conjunction:

Closure step:

90

Recursive Proof (example 3)

Prove: If two models 𝔪 and 𝔪∗ assign the same truth values to each of
the sentence letters in 𝜙, then 𝜙 is true in 𝔪 iff 𝜙 is true in 𝔪∗, i.e. 𝔪 and
𝔪∗ agree on all the sentence letters in 𝜙.

Base step: In the base case 𝜙 is an atomic sentence letter. By assumption 𝔪
and 𝔪∗ agree on all the sentence letters of SL. Thus, they agree on 𝜙.
So, 𝜙 is true in 𝔪 iff 𝜙 is true in 𝔪∗.

Inheritance step:

Recursive Assumption: Suppose that 𝔪 and 𝔪∗ agree on each sentence
𝜙1, 𝜙2, ..., 𝜙𝑛

Negation:

Conditional:

Biconditional:

Disjunction:

Conjunction:

Closure step:

91

Recursive Proof (example 3)

Prove: If two models 𝔪 and 𝔪∗ assign the same truth values to each of
the sentence letters in 𝜙, then 𝜙 is true in 𝔪 iff 𝜙 is true in 𝔪∗, i.e. 𝔪 and
𝔪∗ agree on all the sentence letters in 𝜙.

Base step: In the base case 𝜙 is an atomic sentence letter. By assumption 𝔪
and 𝔪∗ agree on all the sentence letters of SL. Thus, they agree on 𝜙.
So, 𝜙 is true in 𝔪 iff 𝜙 is true in 𝔪∗.

Inheritance step:

Recursive Assumption: Suppose that 𝔪 and 𝔪∗ agree on each sentence
𝜙1, 𝜙2, ..., 𝜙𝑛

Negation: ∼𝜙1 is true on 𝔪 iff 𝜙1 is false on 𝔪 (by Def of Truth) iff 𝜙1
is false on 𝔪∗ (by RA) iff ∼𝜙1 is true on 𝔪∗ (by Def of Truth).

Conditional:

Biconditional:

Disjunction:

Conjunction:

Closure step:

92

Recursive Proof (example 3)

Prove: If two models 𝔪 and 𝔪∗ assign the same truth values to each of
the sentence letters in 𝜙, then 𝜙 is true in 𝔪 iff 𝜙 is true in 𝔪∗, i.e. 𝔪 and
𝔪∗ agree on all the sentence letters in 𝜙.

Base step: In the base case 𝜙 is an atomic sentence letter. By assumption 𝔪
and 𝔪∗ agree on all the sentence letters of SL. Thus, they agree on 𝜙.
So, 𝜙 is true in 𝔪 iff 𝜙 is true in 𝔪∗.

Inheritance step:

Recursive Assumption: Suppose that 𝔪 and 𝔪∗ agree on each sentence
𝜙1, 𝜙2, ..., 𝜙𝑛

Negation: ∼𝜙1 is true on 𝔪 iff 𝜙1 is false on 𝔪 (by Def of Truth) iff 𝜙1
is false on 𝔪∗ (by RA) iff ∼𝜙1 is true on 𝔪∗ (by Def of Truth).

Conditional: (𝜙1 → 𝜙2) is true on 𝔪 iff 𝜙1 is false on 𝔪 or 𝜙2 is true
on 𝔪 (by Def of Truth), iff 𝜙1 is false on 𝔪∗ or 𝜙2 is true on 𝔪∗ (by
RA), iff (𝜙1 → 𝜙2) is true on 𝔪∗ (by Def of Truth).

Biconditional: (𝜙1 ↔ 𝜙2) is true on 𝔪 iff either both 𝜙1 and 𝜙2 are true
on 𝔪, or both are false on 𝔪 (by Def of Truth), iff either both 𝜙1 and
𝜙2 are true on 𝔪∗, or both are false on 𝔪∗ (by RA); iff (𝜙1 ↔ 𝜙2)
is true on 𝔪∗ (by Def of Truth).

Disjunction: (𝜙1∨𝜙2∨...∨𝜙𝑛) is true on 𝔪 iff at least one of 𝜙1, 𝜙2, ..., 𝜙𝑛
is true on 𝔪 (by Def of Truth), iff at least one of 𝜙1, 𝜙2, ..., 𝜙𝑛 is
true on 𝔪∗ (by RA); iff (𝜙1 ∨ 𝜙2 ∨ ... ∨ 𝜙𝑛) is true on 𝔪∗ (by Def
of Truth).

Conjunction: (𝜙1 ∧𝜙2 ∧ ... ∧ 𝜙𝑛) is true on 𝔪 iff all of 𝜙1, 𝜙2, ..., 𝜙𝑛 are
true on 𝔪 (by Def of Truth), iff all of 𝜙1, 𝜙2, ..., 𝜙𝑛 are true on 𝔪∗

(by RA); iff (𝜙1 ∧ 𝜙2 ∧ ... ∧ 𝜙𝑛) is true on 𝔪∗ (by Def of Truth).

Closure step: These are the only ways SL sentences can be generated, and in
every case If two models 𝔪 and 𝔪∗ agree on all of the sentence letters
of 𝜙, then 𝜙 is true in 𝔪 iff 𝜙 is true in 𝔪∗

93

Recursive Proof (example 4)

Prove: no sentence of SL that contains no negations is TFF, i.e. show that
every TFF sentence of SL contains at least one ‘∼’.

94

Recursive Proof (example 4)

Prove: no sentence of SL that contains no negations is TFF, i.e. show that
every TFF sentence of SL contains at least one ‘∼’.

Base step: If 𝜙 is an atomic sentence, then 𝔪+ makes it true (by Def of 𝔪+).

Inheritance step: Recursive Assumption: Suppose the sentences 𝜃1, 𝜃2, … 𝜃𝑛
are true in the model 𝔪+

95

Recursive Proof (example 4)

Prove: no sentence of SL that contains no negations is TFF, i.e. show that
every TFF sentence of SL contains at least one ‘∼’.

Base step: If 𝜙 is an atomic sentence, then 𝔪+ makes it true (by Def of 𝔪+).

Inheritance step: Recursive Assumption: Suppose the sentences 𝜃1, 𝜃2, … 𝜃𝑛
are true in the model 𝔪+

It follows immediately from the recursive assumption and the definition
of Truth in a model that (𝜃1→𝜃2), (𝜃1↔𝜃2), (𝜃1 ∨ 𝜃2 ∨… ∨ 𝜃𝑛), and
(𝜃1 ∧ 𝜃2 ∧… ∧ 𝜃𝑛) are all true on 𝔪+.

96

Recursive Proof (example 4)

Prove: no sentence of SL that contains no negations is TFF, i.e. show that
every TFF sentence of SL contains at least one ‘∼’.

Base step: If 𝜙 is an atomic sentence, then 𝔪+ makes it true (by Def of 𝔪+).

Inheritance step: Recursive Assumption: Suppose the sentences 𝜃1, 𝜃2, … 𝜃𝑛
are true in the model 𝔪+

It follows immediately from the recursive assumption and the definition
of Truth in a model that (𝜃1→𝜃2), (𝜃1↔𝜃2), (𝜃1 ∨ 𝜃2 ∨… ∨ 𝜃𝑛), and
(𝜃1 ∧ 𝜃2 ∧… ∧ 𝜃𝑛) are all true on 𝔪+.

Conclusion: All relevant sentences of SL (i.e., those without negations) are
either atomic or generated by means covered in the inheritance clause.
Thus it has been shown that every sentence without negations is true
on 𝔪+, and thus is not TFF. Equivalently, every TFF sentence contains
at least one negation.

97

Recursive Proof (example 5)

Prove: for any official SL sentence 𝜙, the number of subsentences in 𝜙 is
equal to: the number of tokens of sentence letters in 𝜙 plus the number of
tokens of negation in 𝜙 plus the number of tokens of left parentheses in 𝜙.

Base step:

Inheritance step:

Conclusion:

98

Recursive Proof (example 5)

Prove: for any official SL sentence 𝜙, the number of subsentences in 𝜙 is
equal to: the number of tokens of sentence letters in 𝜙 plus the number of
tokens of negation in 𝜙 plus the number of tokens of left parentheses in 𝜙.

Base step: In the base case, 𝜙 is a sentence letter of SL, in which case 𝜙
contains one subsentence (𝜙 itself), which is equal to its number of
negations (zero) in 𝜙 plus its number of sentence letter tokens in 𝜙 (1:
𝜙 itself) plus the number of left parentheses in 𝜙 (zero)

Inheritance step:

Conclusion:

99

Recursive Proof (example 5)

Prove: for any official SL sentence 𝜙, the number of subsentences in 𝜙
is equal to: the number of tokens of sentence letters in 𝜙 plus the number
of tokens of negation in 𝜙 plus the number of tokens of left parentheses in
𝜙. Shorter: every sentence letter in SL has property (shorter: has property
SS=NT+SLT+LPT)

Base step: In the base case, 𝜙 is a sentence letter of SL, in which case 𝜙
contains one subsentence (𝜙 itself), which is equal to its number of
negations (zero) in 𝜙 plus its number of sentence letter tokens in 𝜙 (1:
𝜙 itself) plus the number of left parentheses in 𝜙 (zero). So, 𝜙 has
property SS=NT+SLT+LPT.

Inheritance step:

Recursive assumption: Suppose the sentences 𝜙1, 𝜙2, … 𝜙𝑛 each has
property SS=NT+SLT+LPT.

Negation:

Conditional:

Biconditional:

Disjunction:

Conjunction:

Conclusion:

100

Recursive Proof (example 5)

Prove: for any official SL sentence 𝜙, the number of subsentences in 𝜙 is
equal to: the number of tokens of sentence letters in 𝜙 plus the number of
tokens of negation in 𝜙 plus the number of tokens of left parentheses in 𝜙.
Shorter: every sentence letter in SL has SS=NT+SLT+LPT.

Base step: In the base case, 𝜙 is a sentence letter of SL, in which case 𝜙
contains one subsentence (𝜙 itself), which is equal to its number of
negations (zero) in 𝜙 plus its number of sentence letter tokens in 𝜙 (1:
𝜙 itself) plus the number of left parentheses in 𝜙 (zero). So, 𝜙 has
property SS=NT+SLT+LPT.

Inheritance step:

Recursive assumption: Suppose the sentences 𝜙1, 𝜙2, … 𝜙𝑛 each has
property SS=NT+SLT+LPT.

Negation: Compared to 𝜙, ∼𝜙 has 1 additional subsentence (∼𝜙 itself;
by Def of Subsentence)), 1 additional token of ‘∼’, 0 additional
sentence letter tokens, and 0 additional left parentheses (by Def of
SL sentence). So, ∼𝜙 has SS=NT+SLT+LPT.

Conditional:

Biconditional:

Disjunction:

Conjunction:

Conclusion:

101

Recursive Proof (example 5)

Prove: for any official SL sentence 𝜙, the number of subsentences in 𝜙
is equal to: the number of tokens of sentence letters in 𝜙 plus the number
of tokens of negation in 𝜙 plus the number of tokens of left parentheses in
𝜙. Shorter: every sentence letter in SL has property (shorter: has property
SS=NT+SLT+LPT)

Base step: In the base case, 𝜙 is a sentence letter of SL, in which case 𝜙
contains one subsentence (𝜙 itself), which is equal to its number of
negations (zero) in 𝜙 plus its number of sentence letter tokens in 𝜙 (1:
𝜙 itself) plus the number of left parentheses in 𝜙 (zero). So, 𝜙 has
property SS=NT+SLT+LPT.

Inheritance step:

Recursive assumption: Suppose the sentences 𝜙1, 𝜙2, … 𝜙𝑛 of order 𝑘 or
less each has property SS=NT+SLT+LPT.

Negation: Compared to 𝜙, ∼𝜙 has 1 additional subsentence (∼𝜙 itself;
by Def of Subsentence)), 1 additional token of ‘∼’, 0 additional
sentence letter tokens, and 0 additional left parentheses (by Def of
SL sentence). So, ∼𝜙 has SS=NT+SLT+LPT.

Conditional: Compared to 𝜙1, 𝜙2, (𝜙1 → 𝜙2) has 1 additional subsen-
tence ((𝜙1 → 𝜙2) itself; by Def of Subsentence)), 0 additional to-
kens of ‘∼’, 0 additional sentence letter tokens, and 1 additional left
parentheses (by Def of SL sentence). So, (𝜙1 → 𝜙2) has property
SS=NT+SLT+LPT.

Biconditional: Compared to 𝜙1, 𝜙2, (𝜙1 ↔ 𝜙2) has 1 additional sub-
sentence ((𝜙1 ↔ 𝜙2) itself; by Def of Subsentence)), 0 additional
tokens of ‘∼’, 0 additional sentence letter tokens, and 1 additional
left parentheses (by Def of SL sentence). So, (𝜙1 ↔ 𝜙2) has prop-
erty SS=NT+SLT+LPT.

102

Disjunction: Compared to 𝜙1, 𝜙2, ..., 𝜙𝑛, (𝜙1 ∨𝜙2, ∨, ..., ∨𝜙𝑛) has 1 ad-
ditional subsentence ((𝜙1 ∨ 𝜙2, ∨, ..., ∨𝜙𝑛) itself; by Def of Sub-
sentence)), 0 additional tokens of ‘∼’, 0 additional sentence letter
tokens, and 1 additional left parentheses (by Def of SL sentence).
So, (𝜙1 ∨ 𝜙2, ∨, ..., ∨𝜙𝑛) has property SS=NT+SLT+LPT.

Conjunction: Compared to 𝜙1, 𝜙2, ..., 𝜙𝑛, (𝜙1∧𝜙2, ∧, ..., ∧𝜙𝑛) has 1 ad-
ditional subsentence ((𝜙1 ∧ 𝜙2, ∧, ..., ∧𝜙𝑛) itself; by Def of Sub-
sentence)), 0 additional tokens of ‘∼’, 0 additional sentence letter
tokens, and 1 additional left parentheses (by Def of SL sentence).
So, (𝜙1 ∧ 𝜙2, ∧, ..., ∧𝜙𝑛) has property SS=NT+SLT+LPT.

Conclusion:

103

Recursive Proof (example 5)

Prove: for any official SL sentence 𝜙, the number of subsentences in 𝜙
is equal to: the number of tokens of sentence letters in 𝜙 plus the number
of tokens of negation in 𝜙 plus the number of tokens of left parentheses in
𝜙. Shorter: every sentence letter in SL has property (shorter: has property
SS=NT+SLT+LPT)

Base step: In the base case, 𝜙 is a sentence letter of SL, in which case 𝜙
contains one subsentence (𝜙 itself), which is equal to its number of
negations (zero) in 𝜙 plus its number of sentence letter tokens in 𝜙 (1:
𝜙 itself) plus the number of left parentheses in 𝜙 (zero). So, 𝜙 has
property SS=NT+SLT+LPT.

Inheritance step:

Recursive assumption: Suppose the sentences 𝜙1, 𝜙2, … 𝜙𝑛 of order 𝑘 or
less each has property SS=NT+SLT+LPT.

Negation: Compared to 𝜙, ∼𝜙 has 1 additional subsentence (∼𝜙 itself;
by Def of Subsentence)), 1 additional token of ‘∼’, 0 additional
sentence letter tokens, and 0 additional left parentheses (by Def of
SL sentence). So, ∼𝜙 has SS=NT+SLT+LPT.

Conditional: Compared to 𝜙1, 𝜙2, (𝜙1 → 𝜙2) has 1 additional subsen-
tence ((𝜙1 → 𝜙2) itself; by Def of Subsentence)), 0 additional to-
kens of ‘∼’, 0 additional sentence letter tokens, and 1 additional left
parentheses (by Def of SL sentence). So, (𝜙1 → 𝜙2) has property
SS=NT+SLT+LPT.

Biconditional: Compared to 𝜙1, 𝜙2, (𝜙1 ↔ 𝜙2) has 1 additional sub-
sentence ((𝜙1 ↔ 𝜙2) itself; by Def of Subsentence)), 0 additional
tokens of ‘∼’, 0 additional sentence letter tokens, and 1 additional
left parentheses (by Def of SL sentence). So, (𝜙1 ↔ 𝜙2) has prop-
erty SS=NT+SLT+LPT.

104

Disjunction: Compared to 𝜙1, 𝜙2, ..., 𝜙𝑛, (𝜙1 ∨𝜙2, ∨, ..., ∨𝜙𝑛) has 1 ad-
ditional subsentence ((𝜙1 ∨ 𝜙2, ∨, ..., ∨𝜙𝑛) itself; by Def of Sub-
sentence)), 0 additional tokens of ‘∼’, 0 additional sentence letter
tokens, and 1 additional left parentheses (by Def of SL sentence).
So, (𝜙1 ∨ 𝜙2, ∨, ..., ∨𝜙𝑛) has property SS=NT+SLT+LPT.

Conjunction: Compared to 𝜙1, 𝜙2, ..., 𝜙𝑛, (𝜙1∧𝜙2, ∧, ..., ∧𝜙𝑛) has 1 ad-
ditional subsentence ((𝜙1 ∧ 𝜙2, ∧, ..., ∧𝜙𝑛) itself; by Def of Sub-
sentence)), 0 additional tokens of ‘∼’, 0 additional sentence letter
tokens, and 1 additional left parentheses (by Def of SL sentence).
So, (𝜙1 ∧ 𝜙2, ∧, ..., ∧𝜙𝑛) has property SS=NT+SLT+LPT.

Conclusion: These are all the ways to generate a SL sentence of order 𝑘 + 1
from SL sentences 𝜙1, 𝜙2, … 𝜙𝑛 of order 𝑘 or less, and in every case
property SS=NT+SLT+LPT is inherited. So, every sentence of SL has
property SS=NT+SLT+LPT.

105

Disjunctive Normal Form

Theorem 2.67. Truth Functional Equivalence Replacement: Let 𝜙 be a
subsentence of 𝜃. If 𝜙 and 𝜙∗ are truth functionally equivalent, and 𝜃∗ is the
result of replacing one occurrence of 𝜙 by 𝜙∗ in 𝜃, then 𝜃 and 𝜃∗ are truth
functionally equivalent.

Base Step: Suppose that 𝜃 is an atomic sentence. In this case 𝜃 and 𝜙 are the
same. So, 𝜃∗ and 𝜙∗ are the same. Thus, by hypothesis (the hypothesis
being that 𝜙 and 𝜙∗ are truth functionally equivalent), 𝜃∗ and 𝜃 are
truth functionally equivalent.

Inheritance Step: For this proof we must consider each connective separately.

Negation: Suppose 𝜃 is a negation ∼𝜓, for some sentence 𝜓 which either
is identical to 𝜙, or of which 𝜙 is a subsentence.
Assume that 𝜓 and 𝜓∗ (𝜓∗ the result of replacing at least one oc-
currence of 𝜙 with 𝜙∗ in 𝜓) are truth functionally equivalent, i.e.
have the same truth value on every model, and are of order 𝑘 or
less. (This is our recursive assumption.) Now, by supposition 𝜃∗ is
the same sentence as (∼𝜓)∗, which with a little thought one can see
is the same sentence as ∼(𝜓∗).
Next, note that by the definition of true in a model, ∼(𝜓∗) is true
in a model 𝔪 iff 𝜓∗ is false in 𝔪 iff 𝜓 is false in 𝔪 iff ∼𝜓 is true in
𝔪. So, 𝜃∗ is true in 𝔪 iff ∼𝜓 is true in 𝔪.
So, 𝜃∗ is true in 𝔪 iff 𝜃 is true in 𝔪, so by definition 𝜃 and 𝜃∗ are
truth functionally equivalent.

Conditional: Suppose 𝜃 is a conditional (𝜓1→𝜓2), were at least one of
𝜓1 and 𝜓2 has 𝜙 as a subsentence, or is identical to 𝜙. So 𝜃∗ is
(𝜓1→𝜓2)∗, which with some thought one can see is either (case 1)
(𝜓1

∗→𝜓2) or (case 2) (𝜓1→𝜓2
∗).

Suppose it is the first case, and assume that 𝜓1 is truth functionally
equivalent to 𝜓1

∗, and that both are of order 𝑘 or less. (This is our
recursive assumption.)

106

We know that (𝜓1
∗→𝜓2) is true in a model 𝔪 iff 𝜓1

∗ is false in 𝔪
or 𝜓2 is true in 𝔪. But that holds iff 𝜓1 is false in 𝔪 or 𝜓2 is true
in 𝔪, and that holds iff (𝜓1→𝜓2) is true in 𝔪.
In the first case, 𝜃∗ is true in 𝔪 iff 𝜃 is true in 𝔪, so by definition 𝜃
and 𝜃∗ are truth functionally equivalent.
Showing that 𝜃 and 𝜃∗ are truth functionally equivalent in case 2 is
left to the reader.

Biconditional: Showing that 𝜃 and 𝜃∗ are truth functionally equivalent
when 𝜃 is a biconditional of the form (𝜓1↔𝜓2) is left to the reader.

Conjunction: Suppose that 𝜃 is a conjunction (𝜓1 ∧ 𝜓2 ∧ 𝜓3 ∧… ∧ 𝜓𝑛),
where at least one of 𝜓1, 𝜓2, 𝜓3, … 𝜓𝑛 has 𝜙 as a subsentence, or
is identical to 𝜙.
So 𝜃∗ is (𝜓1 ∧ 𝜓2 ∧ 𝜓3 ∧… ∧ 𝜓𝑛)∗. Since 𝜃∗ is the result of re-
placing one occurrence of 𝜙 in 𝜃 with 𝜙∗, it’s not hard to see that
(𝜓1 ∧ 𝜓2 ∧ 𝜓3 ∧… ∧ 𝜓𝑛)∗ can only one of either (𝜓∗

1 ∧ 𝜓2 ∧… ∧ 𝜓𝑛)
or (𝜓1 ∧ 𝜓∗

2 ∧… ∧ 𝜓𝑛) or … or (𝜓1 ∧ 𝜓2 ∧… ∧ 𝜓∗
𝑛). But, clearly,

there’s no difference which it is. So, without loss of generality say
that 𝜃∗ is (𝜓1 ∧ 𝜓∗

2 ∧ 𝜓3 ∧… ∧ 𝜓𝑛).
As before, assume that 𝜓2 and 𝜓2

∗ are truth functionally equivalent,
and are of order 𝑘 or less. (This is our recursive assumption.) So, for
any model 𝔪, 𝜃 is true in 𝔪 iff (𝜓1 ∧ 𝜓2 ∧ 𝜓3 ∧… ∧ 𝜓𝑛) is true in 𝔪
iff (𝜓1 ∧ 𝜓∗

2 ∧ 𝜓3 ∧… ∧ 𝜓𝑛) is is true in 𝔪 iff (𝜓1 ∧ 𝜓2 ∧ 𝜓3 ∧… ∧ 𝜓𝑛)∗
is true in 𝔪 iff 𝜃∗ is true in 𝔪.
Therefore 𝜃 and 𝜃∗ are truth functionally equivalent.

Disjunction: The disjunction case is similar and it is left to the reader.

Closure Step: Those are the only ways SL sentences can be formed; hence
the theorem is proved.

107

Disjunctive Normal Form

Observation: sometimes a sentence of SL is hard for us to read and to
process, even though a TFE sentence is easy to read and process

Examples:

1. ∼[𝐴→∼(𝐶 ∧ 𝐵)]→(𝐴→𝐶)
2. 𝐴 ∧ 𝑅 ∧ 𝐴 ∧ ∼𝑅

3. ∼(∼[𝐴→∼𝑅]→(𝐴→𝑅))
4. [∼𝐴 ∨ ∼𝐶 ∨ ∼𝐵] ∨ [∼𝐴 ∨ 𝐶]

108

Disjunctive Normal Form

Observation: sometimes a sentence of SL is hard for us to read and to
process, even though a TFE sentence is easy to read and process

Examples:

1. ∼[𝐴→∼(𝐶 ∧ 𝐵)]→(𝐴→𝐶)
2. 𝐴 ∧ 𝑅 ∧ 𝐴 ∧ ∼𝑅

3. ∼(∼[𝐴→∼𝑅]→(𝐴→𝑅))
4. [∼𝐴 ∨ ∼𝐶 ∨ ∼𝐵] ∨ [∼𝐴 ∨ 𝐶]

NB:

• 1. and 4. are TFE

• 2. and 3. are TFE

2. and 4. are in Disjunctive Normal Form:

A SL sentence is in disjunctive normal form (DNF) iff

1. it contains no conditional (→) or biconditional (↔),

2. negations (∼) only govern sentence letters, and

3. no conjunction (∧) contains a disjunction (∨) as a subsentence.

109

Disjunctive Normal Form

Recipe for translating sentence 𝜙 into DNF:

Step A: If a subsentence of 𝜙 is of the form (𝜓→𝜃) or (𝜃↔𝜓), replace the
subsentence by (∼𝜓 ∨ 𝜃) or (𝜓 ∧ 𝜃)∨ (∼𝜓 ∧ ∼𝜃) respectively. Repeat
as necessary to obtain a sentence 𝜙′ without →’s or ↔’s.

Step B:

1. Replace any subsentence of the form ∼∼𝜓 in 𝜙′ with 𝜓.
2. Replace any subsentence of the form ∼(𝜓 ∧ 𝜃) in 𝜙′ with (∼𝜓 ∨ ∼𝜃).
3. Replace ∼(𝜓 ∨ 𝜃) in 𝜙′ with (∼𝜓 ∧ ∼𝜃).

Repeat as necessary to obtain 𝜙″ in which negations govern nothing but
sentence letters.

Step C: The only thing that could prevent 𝜙″ from being in DNF is that
some conjunctions govern some disjunctions, i.e., there is a subsen-
tence 𝜃 ∧ (𝜓1 ∨ 𝜓2 ∨… ∨ 𝜓𝑛), or the reverse (𝜓1 ∨ 𝜓2 ∨… ∨ 𝜓𝑛) ∧
𝜃. Those subsentences can be replaced by the equivalent (𝜓1 ∧ 𝜃) ∨
(𝜓2 ∧ 𝜃) ∨ … ∨ (𝜓𝑛 ∧ 𝜃). Repeat as necessary.

110

Disjunctive Normal Form

Recipe for translating sentence 𝜙 into DNF:

Step A: If a subsentence of 𝜙 is of the form (𝜓→𝜃) or (𝜃↔𝜓), replace the
subsentence by (∼𝜓 ∨ 𝜃) or (𝜓 ∧ 𝜃)∨ (∼𝜓 ∧ ∼𝜃) respectively. Repeat
as necessary to obtain a sentence 𝜙′ without →’s or ↔’s.

Example: ∼[∼(𝐴 → ∼(𝐶 ∧ 𝐵)) → (𝐴 → 𝐶))]

1. ∼[∼(𝐴 → ∼(𝐶 ∧ 𝐵)) → (𝐴 → 𝐶)]
2. ∼[∼(𝐴 → ∼(𝐶 ∧ 𝐵)) → (∼𝐴 ∨ 𝐶)]
3. ∼[∼(∼𝐴 ∨ (∼(𝐶 ∧ 𝐵))) → (∼𝐴 ∨ 𝐶)]
4. ∼[∼∼(∼𝐴 ∨ (∼(𝐶 ∧ 𝐵))) ∨ (∼𝐴 ∨ 𝐶)]

111

Disjunctive Normal Form

Recipe for translating sentence 𝜙 into DNF:

Step B:

1. Replace any subsentence of the form ∼∼𝜓 in 𝜙′ with 𝜓.
2. Replace any subsentence of the form ∼(𝜓 ∧ 𝜃) in 𝜙′ with (∼𝜓 ∨ ∼𝜃).
3. Replace ∼(𝜓 ∨ 𝜃) in 𝜙′ with (∼𝜓 ∧ ∼𝜃).

Repeat as necessary to obtain 𝜙″ in which negations govern nothing but
sentence letters.

4. ∼[∼∼(∼𝐴 ∨ (∼(𝐶 ∧ 𝐵))) ∨ (∼𝐴 ∨ 𝐶)]
5. ∼[(∼𝐴 ∨ (∼(𝐶 ∧ 𝐵))) ∨ (∼𝐴 ∨ 𝐶)]
6. ∼[(∼𝐴 ∨ (∼𝐶 ∨ ∼𝐵)) ∨ (∼𝐴 ∨ 𝐶)]
7. ∼(∼𝐴 ∨ (∼𝐶 ∨ ∼𝐵)) ∧ ∼(∼𝐴 ∨ 𝐶)
8. ∼∼𝐴 ∧∼(∼𝐶 ∨ ∼𝐵)) ∧ ∼(∼𝐴 ∨ 𝐶)
9. ∼∼𝐴 ∧ ∼(∼𝐶 ∨ ∼𝐵)) ∧ ∼∼𝐴 ∧ ∼𝐶

10. ∼∼𝐴 ∧ (∼∼𝐶 ∧ ∼∼𝐵)) ∧ ∼∼𝐴 ∧ ∼𝐶
11. 𝐴 ∧ (𝐶 ∧ 𝐵)) ∧ 𝐴 ∧ ∼𝐶

112

Disjunctive Normal Form

Recipe for translating sentence 𝜙 into DNF:

Step C: The only thing that could prevent 𝜙″ from being in DNF is that
some conjunctions govern some disjunctions, i.e., there is a subsen-
tence 𝜃 ∧ (𝜓1 ∨ 𝜓2 ∨… ∨ 𝜓𝑛), or the reverse (𝜓1 ∨ 𝜓2 ∨… ∨ 𝜓𝑛) ∧
𝜃. Those subsentences can be replaced by the equivalent (𝜓1 ∧ 𝜃) ∨
(𝜓2 ∧ 𝜃) ∨ … ∨ (𝜓𝑛 ∧ 𝜃). Repeat as necessary.

11. 𝐴 ∧ (𝐶 ∧ 𝐵)) ∧ 𝐴 ∧ ∼𝐶

113

Disjunctive Normal Form

Recipe for translating sentence 𝜙 into DNF:

Step C: The only thing that could prevent 𝜙″ from being in DNF is that
some conjunctions govern some disjunctions, i.e., there is a subsen-
tence 𝜃 ∧ (𝜓1 ∨ 𝜓2 ∨… ∨ 𝜓𝑛), or the reverse (𝜓1 ∨ 𝜓2 ∨… ∨ 𝜓𝑛) ∧
𝜃. Those subsentences can be replaced by the equivalent (𝜓1 ∧ 𝜃) ∨
(𝜓2 ∧ 𝜃) ∨ … ∨ (𝜓𝑛 ∧ 𝜃). Repeat as necessary.

11. 𝐴 ∧ (𝐶 ∧ 𝐵)) ∧ 𝐴 ∧ ∼𝐶

11. is in Disjunctive Normal Form:

A SL sentence is in disjunctive normal form (DNF) iff

1. it contains no conditional (→) or biconditional (↔),

2. negations (∼) only govern sentence letters, and

3. no conjunction (∧) contains a disjunction (∨) as a subsentence.

114

Disjunctive Normal Form

We can prove that 1. and 11. are TFE with a truth table:

𝐴 𝐵 𝐶 ∼[∼(𝐴 → ∼(𝐶 ∧ 𝐵)) → (𝐴 → 𝐶)] 𝐴 ∧ (𝐶 ∧ 𝐵) ∧ 𝐴 ∧ ∼𝐶)

𝖥 𝖥 𝖥 𝖥 𝖥
𝖥 𝖥 𝖥 𝖥 𝖥
𝖥 𝖥 𝖥 𝖥 𝖥
𝖥 𝖥 𝖥 𝖥 𝖥
𝖥 𝖥 𝖥 𝖥 𝖥
𝖥 𝖥 𝖥 𝖥 𝖥
𝖥 𝖥 𝖥 𝖥 𝖥
𝖥 𝖥 𝖥 𝖥 𝖥

115

Disjunctive Normal Form

We can prove that 1. and 11. are TFE with a truth table:

𝐴 𝐵 𝐶 ∼[∼(𝐴 → ∼(𝐶 ∧ 𝐵)) → (𝐴 → 𝐶)] 𝐴 ∧ (𝐶 ∧ 𝐵) ∧ 𝐴 ∧ ∼𝐶)

𝖥 𝖥 𝖥 𝖥 𝖥
𝖥 𝖥 𝖥 𝖥 𝖥
𝖥 𝖥 𝖥 𝖥 𝖥
𝖥 𝖥 𝖥 𝖥 𝖥
𝖥 𝖥 𝖥 𝖥 𝖥
𝖥 𝖥 𝖥 𝖥 𝖥
𝖥 𝖥 𝖥 𝖥 𝖥
𝖥 𝖥 𝖥 𝖥 𝖥

But! We didn’t need the truth table to see that 11. is TFF.

11. 𝐴 ∧ (𝐶 ∧ 𝐵) ∧ 𝐴 ∧ ∼𝐶)

Checking for TFF with DNF: if a TFF sentence is in DNF, then every
disjunct will contain the conjunction with both 𝜙 and ∼𝜙 as conjuncts

116

Disjunctive Normal Form

Checking for TFT with DNF:

• 𝜙 is TFF iff ∼𝜙 is TFT.

• So, we can check whether some sentence 𝜃 is true by

1. consider 𝜃’s negation, ∼𝜃
2. convert ∼𝜃 to DNF
3. determine whether ∼𝜃 is TFF.

117

Disjunctive Normal Form

Checking for TFT with DNF:

• 𝜙 is TFF iff ∼𝜙 is TFT.

• So, we can check whether some sentence 𝜃 is true by

1. consider 𝜃’s negation, ∼𝜃
2. convert ∼𝜃 to DNF
3. determine whether ∼𝜃 is TFF.

Example: is 𝐴 → (𝐵 → 𝐴) TFT? Consider the DNF of it’s negation,
∼(𝐴 → (𝐵 → 𝐴)):

1. ∼(𝐴 → (𝐵 → 𝐴)
2. ∼(𝐴 → (∼𝐵 ∨ 𝐴))
3. ∼(∼𝐴 ∨ (∼𝐵 ∨ 𝐴))
4. ∼∼𝐴 ∧ ∼(∼𝐵 ∨ 𝐴)
5. ∼∼𝐴 ∧∼∼𝐵 ∧∼𝐴
6. 𝐴 ∧ 𝐵 ∧ ∼𝐴

Lesson:

• sentence 6. is TFF

• 6. and 1. are TFE, so 1. is TFF as well

• 𝐴 → (𝐵 → 𝐴) is TFE to the negation of 1. (and also 6.), so 𝐴 →
(𝐵 → 𝐴) it TFT

118

Disjunctive Normal Form

Step A: If a subsentence of 𝜙 is of the form (𝜓→𝜃) or (𝜃↔𝜓), replace the
subsentence by (∼𝜓 ∨ 𝜃) or (𝜓 ∧ 𝜃)∨ (∼𝜓 ∧ ∼𝜃) respectively. Repeat
as necessary to obtain a sentence 𝜙′ without →’s or ↔’s.

Step B:

1. Replace any subsentence of the form ∼∼𝜓 in 𝜙′ with 𝜓.
2. Replace any subsentence of the form ∼(𝜓 ∧ 𝜃) in 𝜙′ with (∼𝜓 ∨ ∼𝜃).
3. Replace ∼(𝜓 ∨ 𝜃) in 𝜙′ with (∼𝜓 ∧ ∼𝜃).

Repeat as necessary to obtain 𝜙″ in which negations govern nothing but
sentence letters.

Step C: The only thing that could prevent 𝜙″ from being in DNF is that
some conjunctions govern some disjunctions, i.e., there is a subsen-
tence 𝜃 ∧ (𝜓1 ∨ 𝜓2 ∨… ∨ 𝜓𝑛), or the reverse (𝜓1 ∨ 𝜓2 ∨… ∨ 𝜓𝑛) ∧
𝜃. Those subsentences can be replaced by the equivalent (𝜓1 ∧ 𝜃) ∨
(𝜓2 ∧ 𝜃) ∨ … ∨ (𝜓𝑛 ∧ 𝜃). Repeat as necessary.

Translate the following into DNF:

1. ∼(𝑄→𝑅) ∨ (𝑄→∼𝑅)

2. 𝑂 ∧ (𝑂→𝑄)

3. [(𝑄→𝑅)→𝑄]→𝑄

4. ∼(𝑄→𝑅) ∧ (𝑂 ∨ 𝑃)

119

Truth Functional Expressiveness

NB: there are 16 possible functions (𝑓𝑛) from ordered pairs of truth values
to truth values (assuming 2 truth values):1

𝜙 𝜃 𝜙(𝑓1)𝜃 𝜙(𝑓2)𝜃 𝜙(𝑓3)𝜃 𝜙(𝑓4)𝜃 𝜙(𝑓5)𝜃 𝜙(𝑓6)𝜃 𝜙(𝑓7)𝜃 𝜙(𝑓8)𝜃

𝖳 𝖳 𝖥 𝖳 𝖥 𝖥 𝖥 𝖳 𝖥 𝖥
𝖳 𝖥 𝖥 𝖥 𝖳 𝖥 𝖥 𝖳 𝖳 𝖥
𝖥 𝖳 𝖥 𝖥 𝖥 𝖳 𝖥 𝖥 𝖳 𝖳
𝖥 𝖥 𝖥 𝖥 𝖥 𝖥 𝖳 𝖥 𝖥 𝖳

𝜙 𝜃 𝜙(𝐹9)𝜃 𝜙(𝑓10)𝜃 𝜙(𝑓11)𝜃 𝜙(𝑓12)𝜃 𝜙(𝑓13)𝜃 𝜙(𝑓14)𝜃 𝜙(𝑓15)𝜃 𝜙(𝑓16)𝜃

𝖳 𝖳 𝖳 𝖥 𝖳 𝖥 𝖳 𝖳 𝖳 𝖳
𝖳 𝖥 𝖥 𝖳 𝖥 𝖳 𝖥 𝖳 𝖳 𝖳
𝖥 𝖳 𝖥 𝖥 𝖳 𝖳 𝖳 𝖥 𝖳 𝖳
𝖥 𝖥 𝖳 𝖳 𝖥 𝖳 𝖳 𝖳 𝖥 𝖳

1NB I’m departing from our textbook here in treating conjunction and disjunction as functions from ordered pairs
of truth values to truth values.

120

Truth Functional Expressiveness

NB: there are 16 possible functions (𝑓𝑛) from ordered pairs of truth values
to truth values (assuming 2 truth values):

𝜙 𝜃 𝜙(𝑓1)𝜃 𝜙 ∧ 𝜃 𝜙(𝑓3)𝜃 𝜙(𝑓4)𝜃 𝜙(𝑓5)𝜃 𝜙(𝑓6)𝜃 𝜙(𝑓7)𝜃 𝜙(𝑓8)𝜃

𝖳 𝖳 𝖥 𝖳 𝖥 𝖥 𝖥 𝖳 𝖥 𝖥
𝖳 𝖥 𝖥 𝖥 𝖳 𝖥 𝖥 𝖳 𝖳 𝖥
𝖥 𝖳 𝖥 𝖥 𝖥 𝖳 𝖥 𝖥 𝖳 𝖳
𝖥 𝖥 𝖥 𝖥 𝖥 𝖥 𝖳 𝖥 𝖥 𝖳

𝜙 𝜃 𝜙 ↔ 𝜃 𝜙(𝑓10)𝜃 𝜙(𝑓11)𝜃 𝜙(𝑓12)𝜃 𝜙 → 𝜃 𝜙(𝑓14)𝜃 𝜙 ∨ 𝜃 𝜙(𝑓16)𝜃

𝖳 𝖳 𝖳 𝖥 𝖳 𝖥 𝖳 𝖳 𝖳 𝖳
𝖳 𝖥 𝖥 𝖳 𝖥 𝖳 𝖥 𝖳 𝖳 𝖳
𝖥 𝖳 𝖥 𝖥 𝖳 𝖳 𝖳 𝖥 𝖳 𝖳
𝖥 𝖥 𝖳 𝖳 𝖥 𝖳 𝖳 𝖳 𝖥 𝖳

121

Truth Functional Expressiveness

NB: there are 16 possible functions (𝑓𝑛) from ordered pairs of truth values
to truth values (assuming 2 truth values):

𝜙 𝜃 𝜙(𝑓1)𝜃 𝜙 ∧ 𝜃 𝜙(𝑓3)𝜃 𝜙(𝑓4)𝜃 𝜙 ↓ 𝜃 𝜙(𝑓6)𝜃 𝜙(𝑓7)𝜃 𝜙(𝑓8)𝜃

𝖳 𝖳 𝖥 𝖳 𝖥 𝖥 𝖥 𝖳 𝖥 𝖥
𝖳 𝖥 𝖥 𝖥 𝖳 𝖥 𝖥 𝖳 𝖳 𝖥
𝖥 𝖳 𝖥 𝖥 𝖥 𝖳 𝖥 𝖥 𝖳 𝖳
𝖥 𝖥 𝖥 𝖥 𝖥 𝖥 𝖳 𝖥 𝖥 𝖳

𝜙 𝜃 𝜙 ↔ 𝜃 𝜙(𝑓10)𝜃 𝜙(𝑓11)𝜃 𝜙|𝜃 𝜙 → 𝜃 𝜙(𝑓14)𝜃 𝜙 ∨ 𝜃 𝜙(𝑓16)𝜃

𝖳 𝖳 𝖳 𝖥 𝖳 𝖥 𝖳 𝖳 𝖳 𝖳
𝖳 𝖥 𝖥 𝖳 𝖥 𝖳 𝖥 𝖳 𝖳 𝖳
𝖥 𝖳 𝖥 𝖥 𝖳 𝖳 𝖳 𝖥 𝖳 𝖳
𝖥 𝖥 𝖳 𝖳 𝖥 𝖳 𝖳 𝖳 𝖥 𝖳

NAND (‘|’): 𝜙|𝜃 is true whenever at least one component is false

NOR (‘↓’): 𝜙 ↓ 𝜃 is true only when all components are false

122

Truth Functional Expressiveness

NB: every pair of sentences of SL of form 𝜙 ↓ 𝜃 and ∼(𝜙 ∨ 𝜃) are TFE:

𝜙 𝜃 𝜙 ↓ 𝜃 ∼(𝜙 ∨ 𝜃)

𝖳 𝖳 𝖥 𝖥
𝖳 𝖥 𝖥 𝖥
𝖥 𝖳 𝖥 𝖥
𝖥 𝖥 𝖳 𝖳

123

Truth Functional Expressiveness

NB: every pair of sentences of SL of form 𝜙 ↓ 𝜃 and ∼(𝜙 ∨ 𝜃) are TFE:

𝜙 𝜃 𝜙 ↓ 𝜃 ∼(𝜙 ∨ 𝜃)

𝖳 𝖳 𝖥 𝖥
𝖳 𝖥 𝖥 𝖥
𝖥 𝖳 𝖥 𝖥
𝖥 𝖥 𝖳 𝖳

Similarly, every pair of sentences of SL of form 𝜙|𝜃 and ∼(𝜙∧ 𝜃) are TFE:

𝜙 𝜃 𝜙|𝜃 ∼(𝜙 ∧ 𝜃)

𝖳 𝖳 𝖥 𝖥
𝖳 𝖥 𝖳 𝖳
𝖥 𝖳 𝖳 𝖳
𝖥 𝖥 𝖳 𝖳

Lesson:

• adding ‘|’ or ‘↓’ to SL do not increase its expressive power, i.e. allow
SL to express any sentences that are not TFE to a sentence already
expressible in SL

124

Truth Functional Expressiveness

There’s nothing special about ‘∧’ and ‘∨’:

𝜙 𝜃 𝜙 ↓ 𝜃 ∼(𝜙 ↓ 𝜃) 𝜙 ∨ 𝜃

𝖳 𝖳 𝖥 𝖳 𝖳
𝖳 𝖥 𝖥 𝖳 𝖳
𝖥 𝖳 𝖥 𝖳 𝖳
𝖥 𝖥 𝖳 𝖥 𝖥

And:

𝜙 𝜃 𝜙|𝜃 ∼(𝜙|𝜃) 𝜙 ∧ 𝜃

𝖳 𝖳 𝖥 𝖳 𝖳
𝖳 𝖥 𝖳 𝖥 𝖥
𝖥 𝖳 𝖳 𝖥 𝖥
𝖥 𝖥 𝖳 𝖥 𝖥

Lesson:

• adding ‘|’ or ‘↓’ and removing ‘∧’ and ‘∨’ from SL do not decrease
its expressive power

125

